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Abstract

A theorem of Krasnosel’ski and Zabreiko (1984) implies that an equilibrium of

an abstract economic model cannot be asymptotically stable, for natural adjust-

ment dynamics, unless its fixed point index is +1. This result provides a precise

and general formulation, and proof, of Samuelson’s correspondence principle, which

is commonly understood as a consequence of the 1-dimensional case.
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1 Introduction

The correspondence principle was described by Paul Samuelson in two articles (Samuel-

son (1941, 1942)) and his famous Foundations of Economic Analysis (Samuelson (1947))

after being stated informally by Hicks (1939). Roughly, it asserts that the stability of an

equilibrium, with respect to dynamic equilibration processes, implies that the equilib-

rium’s comparative statics have certain qualitative properties. Samuelson’s writings con-

sider a host of specific models, but he did not formulate the correspondence principle as

a definite and general theorem. This note points out that such a formulation is possible,

and in fact already exists. Specifically, a theorem of Krasnosel’ski and Zabreiko (1984) in

the theory of nonlinear dynamical systems gives a necessary condition for stability of an

isolated equilibrium in the context of a finite dimensional dynamical system. (Theorem

2 of Dierker (1972) is closely related, as we explain in Section 2.) The correspondence
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principle, as it is commonly understood, follows directly from the 1-dimensional case of

this result, and the consequences of stability for comparative statics in higher dimensions

are immediately evident.

Since Samuelson’s work a vast body of research studying dynamic economic models

has developed, but for the most part it studies equilibria that play out over time, rather

than dynamic adjustment to equilibrium. Researchers in general equilibrium theory (e.g.,

Arrow and Hurwicz (1958); Arrow et al. (1959)) found some special cases in which some

equilibria are necessarily stable with respect to Walrasian tatonnement dynamics, but

examples developed by Scarf (1960) showed that this phenomenon is restricted to very

small numbers of goods or agents. A later line of research (Saari and Simon (1978); Saari

(1985); Williams (1985); Jordan (1987)) showed that stability is informationally demand-

ing, in the sense that an adjustment process that is guaranteed to return to equilibrium

after a small perturbation requires essentially all the information in the matrix of partial

derivatives of the aggregate excess demand function. It should be stressed that these

findings have limited relevance here, because in the correspondence principle stability

is an hypothesis rather than a conclusion. Even though the correspondence principle is

now venerable and very widely known, research specifically related to it has been rather

sparse and largely restricted to 1-dimensional applications, with the notable exception of

its development by Echenique (2000, 2002, 2004) in the context of games with strategic

complementarities. Echenique works with discrete time adjustment processes, and his

setting is largely free of topological restrictions. Echenique (2008) provides a succinct

guide to the current state of our understanding and related literature.

The difficulties impeding a clearer understanding of the correspondence principle are

both conceptual and mathematical. On the conceptual side, Samuelson’s understand-

ing of the role of dynamics in economics was based on physics, and would nowadays be

considered rather naive. Specifically, he imagined that equilibrium was an endstate of

a dynamic process that was potentially an object of theoretical and empirical investi-

gation, and in practice the correspondence principle is derived from Walrasian taton-

nement. After the rational expectations revolution this perspective seems problematic:

if a continuous adjustment process leads to equilibrium, and the agents in the model

understand this, instead of conforming to the process they will exploit it. The nature

of the equilibration process is therefore unknowable in principle, or perhaps not even a

meaningful concept. In the face of these concerns, what might we mean when we say

that an equilibrium is dynamically stable?

In evolutionary game theory the principle of rational expectations does not apply,

because the dynamics are given by reproduction rates that depend only on the success of
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each strategy in the current environment. Thus it is natural that an important general-

ization of the result emphasized here, due to Demichelis and Ritzberger (2003), emerged

in that literature. Their paper provides pointers to a rather large literature in which

evolutionary processes are studied, with various consequences for Nash equilibria and

sets of equilibria that are, in various senses, stable.

A quite different conceptual picture emerges when we consider how the correspon-

dence principle is actually applied. Both in general equilibrium theory and in game

theory, as well as in many other economic models, equilibrium is defined, in at least an

informal sense, as a rest point of a process in which utility maximizing agents would

respond to a failure of the equilibrium conditions by changing their behavior. This gives

rise to some sense of “reasonable” or “natural” dynamics: the various prices each adjust

in the direction of excess demand, though possibly at quite different rates, or each agent

adjusts her mixed strategy in some direction that would increase expected utility if other

agents were not also adjusting. Our main result can be understood as asserting that if an

equilibrium is stable for a dynamical system that is reasonable or natural in this sense,

then a certain linear transformation (roughly, the one represented by the matrix that is

inverted in the process of computing comparative statics) has a positive determinant. If

we think of this picture as a “justification” of the equilibrium, in the sense of asserting

that because the determinant is positive, the equilibrium is in some sense likely, then the

story seems rather weak. But this is not really the point.

Consider an equilibrium for which the determinant is negative. There is no reason-

able or natural dynamics for which the equilibrium is stable. From a strictly logical point

of view it is still possible that the equilibrium is stable, and thus potentially relevant

empirically, in relation to some actual adjustment process, which must be either unnat-

ural, or perhaps much more complex in some mysterious and unfathomable way. It seem

likely that most economists would regard this possibility as far fetched. This creates a

strong presumption that the correspondence principle is a valid criterion for ruling some

equilibria out of consideration, and indeed should be an element of the fundamental

toolkit of economic analysis.

The next section states the Krasnosel’ski-Zabreiko theorem, and explains its conse-

quences for comparative statics. Section 3 gives an informal discussion of the elements

of one method of proving this result; the topological fixed point index is a central aspect

of this approach. Section 4 concludes with a few brief remarks.
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2 The Main Result

Let U ⊂ R
m be open. Elements of U are thought of as vectors of endogenous variables.

The economic model is given by a function g : U → R
m. We will think of g as a vector

field, and in general we will describe a function from a subset of U to R
m as a vector

field when we wish to highlight this interpretation. Under mild technical conditions

described below such a vector field determines a dynamical system. Let f : U → R
m

be the function f(x) = x+ g(x). We think of f as a function whose fixed points are of

interest. An equilibrium is an x0 ∈ U such that g(x0) = 0, so x0 is a rest point of the

dynamical system determined by g. Equivalently, an equilibrium is a fixed point of f .

When f and g are C1 the index transformation at x0 is the linear transformation

−Dg(x0) = I −Df(x0) : R
m → R

m

where I is the identity. An equilibrium is regular if its index transformation is nonsin-

gular.

We now review basic definitions and results concerning dynamical systems. Recall

that if (Y, d) and (Z, e) are metric spaces, a function γ : Y → Z is locally Lipschitz

if each y ∈ Y has a neighborhood Vy for which there is a constant Ly > 0 such that

e(γ(y′), γ(y′′)) ≤ Lyd(y
′, y′′) for all y′, y′′ ∈ Vy. The Picard-Lindelöf theorem asserts that

if C ⊂ U is compact and g is locally Lipschitz, as we assume henceforth, then for some

ε > 0 there is a unique continuous function ϕ : C × (−ε, ε) → U such that ϕ(x, 0) = 0

for all x, each ϕ(x, ·) is C1, and ∂ϕ

∂t
(x, t) = g(ϕ(x, t)) for all (x, t). In addition, if g is Cr

for some 1 ≤ r ≤ ∞, then ϕ is Cr. Using this result, it is not hard to show that there is

an open Ω′ ⊂ U × R and a continuous function Φ′ : Ω′ → U such that

(a) for each x ∈ U , { t : (x, t) ∈ Ω′ } is an open interval containing 0;

(b) ∂Φ′

∂t
(x, t) = g(Φ′(x, t)) for all (x, t) ∈ Ω′.

If Ω′′ and Φ′′ also satisfy these conditions, then Ω′ ∪Ω′′ satisfies (a), and the uniqueness

aspect of the Picard-Lindelöf theorem implies that Φ′ and Φ′′ agree on Ω′ ∩ Ω′′, so the

function on Ω′ ∪ Ω′′ that agrees with Φ′ on Ω′ and with Φ′′ on Ω′′ is well defined and

satisfies (b). It follows that there is a pair Ω and Φ satisfying these conditions that is

maximal in the sense that Ω′ ⊂ Ω for any other such pair Ω′ and Φ′. We call Ω and Φ

the flow domain and the flow of the dynamical system given by g.

The fundamental definitions related to stability are as follows. A set A ⊂ U is stable

if, for every neighborhood V of A, there is a neighborhood W such that W × [0,∞) ⊂ Ω
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and Φ(x, t) ∈ V for all x ∈ W and t ≥ 0. Stability does not require the convergence to

A of trajectories that start near A.

Asymptotic stability is a stronger concept. The ω-limit set of x ∈ U is

⋂

t0≥0

{Φ(x, t) : t ≥ t0 }.

A set A ⊂ U is invariant if A× [0,∞) ⊂ Ω and Φ(A, t) ⊂ A for all t ≥ 0. The domain

of attraction of A is

D(A) = { x ∈ U : the ω-limit set of x is nonempty and contained in A }.

A set A ⊂ U is asymptotically stable if:

(a) A is compact;

(b) A is invariant;

(c) D(A) is a neighborhood of A;

(d) for every neighborhood Ṽ of A there is a neighborhood V such that Φ(x, t) ∈ Ṽ

for all x ∈ V and t ≥ 0.

An asymptotically stable set isminimal if it is nonempty and it does not have a nonempty

proper subset that is asymptotically stable. If A is asymptotically stable, then so is
⋂

t≥0Φ(A, t), so the two sets are equal when A is minimal. Note that a minimal asymp-

totically stable set is necessarily connected.

Theorem 1 (Krasnosel’ski and Zabreiko (1984), Th. 52.1). If g is C1, x0 is a regular

equilibrium, and {x0} is an asymptotically stable set, then the determinant of the index

transformation at x0 is positive.

An equilibrium x0 is exponentially stable if there is an invariant neighborhood U of

x0 and constants B, c > 0 such that ‖Φ(x, t) − x0‖ ≤ Be−ct‖x − x0‖ for all x ∈ U and

t ≥ 0. If g is C1, x0 is an equilibrium, and all the eigenvalues of the Dg(x0) have negative

real parts, then x0 is exponentially stable. (See p. 181 of Hirsch and Smale (1974). Also,

see p. 187 for the fact that if {x0} is stable, then all the eigenvalues have nonpositive

real parts.) Theorem 2 of Dierker (1972) is based on the observation that if all the the

eigenvalues of Dg(x0) have negative real parts, then the vector field index (this and the

fixed point index are described in the next section) of the equilibrium is (−1)m, which

implies that its fixed point index is +1 and the determinant of the index transformation

is positive. In the general equilibrium context of that paper the sum of the fixed point
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indices is +1, so it cannot be the case that all equilibria satisfy this condition unless

there is a unique equilibrium. For additional details see Ch. 11 of Dierker (1974).

In order to explain the relevance of Theorem 1 to comparative statics we consider

a parameterized model g : U × P → R
m where P ⊂ R

p is an open set of vectors of

exogenous parameters. The method of comparative statics is to totally differentiate the

equation g(x(α), α) = 0, then rearrange, arriving at the equation

dx

dα
(α0) = −∂xg(x0, α0)

−1∂αg(x0, α0).

Here ∂xg and ∂αg denote the matrices of partial derivatives of the components of g with

respect to the components of x and α respectively. This calculation is justified when g is

C1 and x0 is a regular equilibrium for α0 because the implicit function theorem implies

that there is a C1 function x defined in a neighborhood of α0 such that x(α0) = x0 and

g(x(α), α) = 0 for all α in the domain of x.

When m = 1, −∂xg(x0, α0) and its inverse are just numbers, and if they are positive,

then dx
dα
(α0) is a positive scalar multiple of ∂αg(x0, α0). This phenomenon is what is

commonly understood as the correspondence principle. It is sometimes asserted (e.g.,

the critical discussion on pp. 320–321 of Arrow and Hahn (1971)) that the correspondence

principle has no consequences in higher dimensional settings. This does not seem quite

correct. The fact that the determinant of −∂xg(x0, α0) is positive is just one bit of

information, and its consequences are not as simple as in the one dimensional case, but

it is nonetheless a qualitative feature of the comparative statics. One should expect that

it will find some interesting multidimensional applications, in ways that are perhaps

difficult to foresee, because they will depend on auxilary assumptions motivated by

specific contexts.

3 Mathematical Background

There is a great deal to be learned from Krasnosel’ski and Zabreiko (1984), but it does not

provide a succinct self contained proof of Theorem 1, because the argument is wrapped

up in larger themes developed throughout the course of the book. Zabczyk (1992),

pp. 109–111, gives a proof that is brief and fairly simple. Also, the proofs of the more

general result of Demichelis and Ritzberger (2003) are useful. Here we attempt to give

an informal and intuitive explanation of the main elements of the relevant circle of

ideas, along the lines of Demichelis and Ritzberger. The first chapter of McLennan

(2012) provides a more extended but still informal discussion. The rest of that book is

a comprehensive development of fixed point theory, emphasizing the fixed point index,
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which has a central role in what follows.

The first step in taking advantage of the hypothesis of stability is to attain an invariant

neighborhood of x0. The tool used to achieve this is a Lyapunov function. A function

h : U → R is g-differentiable if the g-derivative

gh(x) =
d

dt
h(Φ(x, t))|t=0

is defined for every x ∈ U . A continuous function L : U → [0,∞) is a Lyapunov function

for A ⊂ U if:

(a) L−1(0) = A;

(b) L is g-differentiable with gL(x) < 0 for all x ∈ U \ A;

(c) for every neighborhood V of A there is an ε > 0 such that L−1([0, ε]) ⊂ V .

It is intuitive and very well known that if A is compact and there is a Lyapunov

function for A, then A is asymptotically stable. The converse is a highly nontrivial

result with a rather complicated history, that is briefly sketched by Nadzieja (1990).

Briefly, a sequence of partial solutions, over several decades, eventually culminated in a

complete (in the sense that the Lyapunov function can be required to be C∞) solution

by Wilson (1969). We only need the following less refined result, for which Nadzieja’s

somewhat simpler argument is sufficient.

Proposition 1. If A is asymptotically stable, then (after replacing U with a suitable

neighborhood of A) there is a Lyapunov function for A.

Let L : U → [0,∞) be a Lyapunov function for A. There are some details to attend to

in a formal argument, but it should come as no surprise that for some ε > 0, L−1
(

[0, ε])

is invariant, with
⋂

t≥0Φ(L
−1([0, ε]), t) ⊂ A.

The fixed point index allows us to take advantage of this information. The theory of

the fixed point index begins with the observation that a well behaved function from the

unit interval to itself crosses the diagonal going from above to below one more time than

it crosses going from below to above. (See Figure 1.) This principle—that the number

of fixed points at which the determinant of the index transformation is positive is one

greater than the number of fixed points at which the determinant is negative—extends to

well behaved functions from the m-dimensional ball to itself, for any m. In the simplest

settings one may define the index of a fixed point of the first type to be +1 and the index

of the second type to be −1. More generally, if C ⊂ U is compact and f : C → U has

only regular fixed points, none of which lie in ∂C, then the index Λ(f) is defined to be the
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number of fixed points whose index transformations have positive determinants minus

the number of fixed points whose index transformations have negative determinants. (If

C ⊂ U is compact we let ∂C denote the topological boundary of C.)

The fixed point index for regular economies was introduced in general equilibrium

theory by Dierker (1972, 1974). It plays a role in the analysis of the Lemke-Howson

algorithm in Shapley (1974). Hofbauer (1990) applies the vector field index (defined

below) to dynamic issues in evolutionary game theory, and Ritzberger (1994) applies it

to game theory systematically.

b

b

b

0 1
0

1

+1

-1

+1

Figure 1

For less well behaved functions the fixed point index is not defined directly, but

is instead characterized axiomatically. An index admissible function is a continuous

function ϕ : C → R
m, where C ⊂ U is compact, such that ϕ(x) 6= x for all x ∈ ∂C. Let

I be the set of index admissible functions.

Proposition 2. There is a unique function Λ : I → ZZ, called the fixed point index,

satisfying:

(I1) (Normalization) If c : C → R
m is a constant function whose value is an element

of the interior of C, then Λ(c) = 1.

(I2) (Additivity) If ϕ : C → R
m is an element of I, C1, . . . , Cr are pairwise disjoint

compact subsets of C, and the fixed points of ϕ are contained in the union of the
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interiors of the Ci, then

Λ(ϕ) =
∑

i

Λ(ϕ|Ci
).

(I3) (Continuity) For each element ϕ : C → R
m of I there is a neighborhood V ⊂

C × R
m of the graph of ϕ such that Λ(ϕ̃) = Λ(ϕ) for every ϕ̃ ∈ I whose graph is

contained in U .

Proofs of Proposition 2 are rather lengthy, and depend on background from differen-

tial or algebraic topology. In the style of proof employing differential topology the main

idea is to approximate an arbitrary continuous function with a smooth function whose

fixed points are regular (that is, the index transformation is nonsingular) as shown in

Figure 1. This gives a definition of the general index, and of course one needs to show

that this definition is well posed, in the sense that all sufficiently accurate approxi-

mations give the same definition, and one needs to verify the axioms. Uniqueness is

demonstrated by starting with Normalization and using the other axioms to show that a

series of increasingly general cases are uniquely determined. In fact Proposition 2 can be

generalized in several directions, including much more general spaces, which may be infi-

nite dimensional, and contractible valued correspondences, and the fixed point index has

additional properties; informal explanations are given in McLennan (2008) and Chapter

1 of McLennan (2012).

An index admissible homotopy is a continuous function h : C × [0, 1] → R
m such

that for each t, ht = h(·, t) ∈ I. In this circumstance we say that h0 and h1 are index

admissible homotopic. Note that Continuity implies that Λ(ht) is a locally constant

function of t, hence constant because the unit interval is connected, so Λ(h0) = Λ(h1). For

all 0 < t < T < ∞, Φ(·, t)|L−1([0,ε]) and Φ(·, T )|L−1([0,ε]) are index admissible homotopic,

and the image of Φ(·, T )|L−1([0,ε]) is contained in a small neighborhood of A when T is

large.

The case of general A is quite interesting, but presents technical complications, so we

only state the result achieved by Demichelis and Ritzberger (2003). In the context of a

game theoretic model they show that if A is a minimal asymptotically stable subset of

the set of equilibria, and A is an absolute neighborhood retract, then

Λ(Φ(·, t)|L−1([0,ε])) = χ(A)

for all t > 0, where χ(A) is the Euler characteristic of A.

From this point forward we assume that A = {x0}. For large T the image of

Φ(·, T )|L−1([0,ε]) is contained in a small neighborhood of x0, in which case convex com-

bination gives an index admissible homotopy between Φ(·, T )|L−1([0,ε]) and the constant
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function with value x0. Applying Normalization and Continuity, we conclude that for

all t > 0,

Λ(Φ(·, t)|L−1([0,ε])) = 1.

There is a variant of the index concept for vector fields that is prominent in the theory

of dynamical systems. If C ⊂ U is compact, a continuous vector field γ : C → R
m is

index admissible if it has no equilibria in ∂C. Let V be the set of index admissible vector

fields.

Proposition 3. There is a unique function ind : V → ZZ, called the vector field index,

such that for all γ ∈ V with domain C:

(V1) ind(γ) = 1 if, for some x0 in the interior of C, γ(x) = x− x0 for all x ∈ C.

(V2) ind(γ) =
∑s

i=1 ind(γ|Ci
) whenever C1, . . . , Cs are pairwise disjoint compact subsets

of C such that all the equilibria of γ are contained in the union of the interiors of

the Ci.

(V3) There is a neighborhood V ⊂ C × R
m of the graph of γ such that ind(γ′) = ind(γ)

for any vector field γ′ on C whose graph is contained in V .

A simple method of proving Proposition 3 connects the vector field index to the fixed

point index. For any γ ∈ V and any neighborhood V ⊂ C × R
m of the graph of γ there

is C∞ vector field γ̃ on C whose graph is contained in V . If V is sufficiently small, then

γ̃ is necessarily index admissible. There is a C∞ extension of γ̃ to a neighborhood of C

(by virtue of the definition of a C∞ function on an arbitrary subset of U) which defines

a dynamical system with flow Ψ, and we can set

ind(γ) = Λ(Ψ(·, t)|C)

for small negative t. One must show that this definition does not depend on the choice

of γ̃ if V is sufficiently small, or on the choice of the extension. One must also show that

there is some δ > 0 such that Ψ(·, t)|C is index admissible whenever −δ < t < 0, so that

the choice of t does not matter. And of course one must verify the axioms. All this is

possible; cf. Ch. 15 of McLennan (2012).

An obvious and basic principle of dynamical systems is that replacing a vector field

with its negation amounts to reversing the direction of time. We conclude that for all

t > 0,

1 = Λ(Φ(·, t)|L−1([0,ε])) = ind(−g|L−1([0,ε])).
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Note that up to this point the argument has not used the assumption that x0 is a regular

equilibrium, and in fact the real assertion of Theorem 1, that the index of {x0} for −g

is +1, remains true without this assumption. The axiomatic description of the index

(which is not standard in the theory of dynamical systems) is required in order to be

able to state this version of the result.

If x0 is a regular equilibrium, then in a small neighborhood of x0 one may easily

construct an index admissible (in the sense that is appropriate for vector fields) homotopy

between g and the linear vector field x 7→ Dg(x0)(x− x0). The set of nonsingular linear

transformations from R
m to itself has two path components, according to the sign of the

determinant, so (V1) and (V3) imply that the determinant of −Dg(x0) is positive, which

is the assertion of Theorem 1.

4 Concluding Remarks

Samuelson’s correspondence principle has been revealed to be the consequence, for com-

parative statics, of a prominent theorem from the theory of dynamical systems. Seen

in this light, there is a compelling argument for regarding it as one of the foundational

principles of economic analysis, with potentially interesting consequences beyond the 1-

dimensional case. Our proof sketch reveals the central role and utility of the fixed point

index. As additional evidence of the value of the fixed point index in economic analy-

sis we mention the proof of uniqueness of equilibrium expected payoffs for a coalitional

bargaining game in Eraslan and McLennan (2005).

References

Arrow, K., Block, H. D., and Hurwicz, L. (1959). On the stability of the competitive

equilibrium, II. Econometrica, 27:82–109.

Arrow, K. and Hurwicz, L. (1958). On the stability of the competitive equilibrium, I.

Econometrica, 26:522–552.

Arrow, K. J. and Hahn, F. H. (1971). General Competitive Analysis. Holden Day, San

Francisco.

Demichelis, S. and Ritzberger, K. (2003). From evolutionary to strategic stability. Jour-

nal of Economic Theory, 113:51–75.

Dierker, E. (1972). Two remarks on the number of equilibria of an economy. Economet-

rica, 40:951–953.



REFERENCES 12

Dierker, E. (1974). Topological Methods in Walrasian Economics. Lecture Notes in

Economics and Mathematical Systems, No. 72. Springer Verlag, Berlin-Heidelberg-

New York.

Echenique, F. (2000). Comparative statics by adaptive dynamics and the correspondence

principle. Working Paper No. E00-273, Department of Economics, UC Berkeley.

Echenique, F. (2002). Comparative statics by adaptive dynamics and the correspondence

principle. Econometrica, 70:833–844.

Echenique, F. (2004). A weak correspondence principle for models with complementari-

ties. Journal of Mathematical Economics, 40:145–152.

Echenique, F. (2008). The correspondence principle. In Durlauf, S. and Blume, L., edi-

tors, The New Palgrave Dictionary of Economics (Second Edition). Palgrave Macmil-

lan, New York.

Eraslan, H. and McLennan, A. (2005). Uniqueness of stationary equilibrium payoffs in

coalitional bargaining. Mimeo, University of Pennsylvania.

Hicks, J. R. (1939). Value and Capital. Clarendon Press, Oxford.

Hirsch, M. and Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear

Algebra. Academic Press, Orlando.

Hofbauer, J. (1990). An index theorem for dissipative semiflows. Rocky Mountain Journal

of Mathematics, 20:1017–1031.

Jordan, J. S. (1987). The informational requirement of local stability in decentralized

allocation mechanisms. In Groves, T., Radner, R., and Reiter, S., editors, Information,

Incentives, and Economic Mechanisms: Essays in Honor of Leonid Hurwicz, pages

183–212. University of Minnesota Press, Minneapolis.

Krasnosel’ski, M. A. and Zabreiko, P. P. (1984). Geometric Methods of Nonlinear Anal-

ysis. Springer-Berlin, Berlin.

McLennan, A. (2008). Fixed point theorems. In Durlauf, S. and Blume, L., editors,

The New Palgrave Dictionary of Economics (Second Edition), pages 29–52. Palgrave

Macmillan, New York.

McLennan, A. (2012). Advanced Fixed Point Theory for Economics.

http://cupid.economics.uq.edu.au/mclennan/Advanced/advanced.html.



REFERENCES 13

Nadzieja, T. (1990). Construction of a smooth Lyapunov function for an asymptotically

stable set. Czechoslovak Mathematical Journal, 40:195–199.

Ritzberger, K. (1994). The theory of normal form games from the differentiable view-

point. International Journal of Game Theory, 23:201–236.

Saari, D. G. (1985). Iterative price mechanisms. Econometrica, 53:1117–1133.

Saari, D. G. and Simon, C. P. (1978). Effective price mechanisms. Econometrica, 46:1097–

1125.

Samuelson, P. (1947). Foundations of Economic Analysis. Harvard University Press.

Samuelson, P. A. (1941). The stability of equilibrium: Comparative statics and dynamics.

Econometrica, 9:97–120.

Samuelson, P. A. (1942). The stability of equilibrium: Linear and nonlinear systems.

Econometrica, 10:1–25.

Scarf, H. (1960). Some examples of global instability of the competitive equilibrium.

International Economic Review, 1:157–172.

Shapley, L. S. (1974). A note on the Lemke-Howson algorithm. Math. Programming

Stud., 1:175–189. Pivoting and extensions.

Williams, S. R. (1985). Necessary and sufficient conditions for the existence of a locally

stable message process. Journal of Economic Theory, 35:127–154.

Wilson, F. W. (1969). Smoothing derivatives of functions and applications. Transactions

of the American Mathematical Society, 139:413–428.

Zabczyk, J. (1992). Mathematical Control Theory: An Introduction. Birkhäuser, Boston.


