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Comparison of estimators of the

Weibull Distribution

Abstract:

We compare the small sample performance (in terms of bias and root mean squared error) of

L-moment estimator of 3-parameter Weibull distribution with Maximum likelihood Estimation

(MLE), Moment Estimation (MoE), Least squared estimation (LSE), the Modified MLE (MMLE),

Modified MoE (MMoE), and the Maximum Product of Spacing (MPS). Overall, the LM method

has the tendency to perform well as it is almost always close to the best method of estima-

tion. The ML performance is remarkable even in small sample of size n = 10 when the shape

parameter β lies in [1.5, 4] range. The MPS estimator dominates others when 0.5 ≤ β < 1.5.

For Large β ≥ 6, the MMLE outweighs others in large sample size of n ≥ 50, whereas LM

takes the lead in small samples.

Keywords: Weibull distribution; Order statistics; L-moment estimation; Maximum likelihood

estimation, Methods of moments; Maximum Product of Spacing.
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1 Introduction

Maximum likelihood Estimation (MLE) is generally a starting point when it comes to esti-

mating the 3-parameter Weibull distribution. However, there are other estimation methods

developed over time for Weibull, which are based on different methodologies such as Mo-

ment Estimation (MoE), L-moment (LM) method, Probability Weighted Moment estimators

(PWM) and Leas-squares estimation (LSE). Hosking (1990) proposed a class of moments

called L-moments (LM), which are defined for Weibull by Goda et al. (2010) and applied

by Lana et al. (2008). Following Jing et al. (1989), Bartoluccia et al. (1999) derived the

PWM of the 3-parameter Weibull distribution.

The literature on Weibull estimation further developed in two ways: One is to improve

upon the MLE and the other is to supply a solution for estimation when MLE fails. The

method of estimation which attempts to improve estimation over MLE are the modified

MLE (MMLE) and modified MoE (MMoE) of Cohen & Whitten (1982) and perhaps the

method due to McCool (1998). The estimation methods, which provide solution when MLE

fails to converge are the Bayesian procedure of Smith & Naylor (1987), and the maximum

product of spacing (MPS) estimators of Cheng & Amin (1983).

Now that we have got a stream of estimation methods available for 3-parameter Weibull

distribution, which are well researched on theoretical aspect of the estimation method in-

dividually. However, the small sample comparison in terms of bias and Root Mean Squared

Error (RMSE) of L-moment estimator vis’-a-vis other popular estimators is not documented

in the literature. We attempt to fill this gap up by comparing LM estimation method with

that of other methods; namely, MLE, MMLE, LSE, MoE, MMoE, and the MPS. Thereby the

main aim of the paper becomes developing a guideline of choosing the best estimation

method for 3-Parameter Weilbull distribution, which we think would be of deep interest

to applied statisticians.

The reason for leaving out PWM is based on Bartoluccia et al. (1999) who conclude that

the best use of PWM is for initializing the MLE method, because the PWM estimators are

not as accurate as the ML method. Likewise, Bayesian is more subjective approach as it

requires specifying a suitable prior distribution, which is reported to be a difficult task

apart from the lack of interpretability of the estimation results.
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We see L-moments having the theoretical advantages over conventional moments of (i)

being able to characterize a wider range of distributions, and (ii) when estimated from

a sample, being more robust to the presence of outliers in the data. It would be in this

sense, the parameter estimates obtained from L-moments may be more accurate than MoE

and ML and/or their variants in small samples due to smaller small sample bias (SSB) and

being less affected by the outliers. Even for the cases where ML parameters are optimal,

SSB yet exists since the ML methodology is based on asymptotic (large sample) theory.

These motivated us to compare L-moment estimators with that of others.

The rest of the paper is organized as follows. In the next section, we introduce the Weibull

distribution. The estimation methods and procedures are covered in Section 3. Using

Monte Carlo simulations, the bias and RMSE in the estimation methods are analyzed and

the guideline of the best estimation method is laid down in Section 4. In Section 5, we

provide examples of choosing the best estimation method using the guidelines developed

in previous section. In the last section, we summarize the work presented in this paper.

2 Weibull distribution

Weibull (1951) derived the generalization of the exponential distribution that now bears

his name.1 Since that time, the Weibull distribution has proved to be a successful model for

many product failure mechanisms because it is a flexible distribution (given that it can, for

example, take the form of either the exponential distribution or the approximate normal

distribution, and can be skewed either positively or negatively), with a wide variety of pos-

sible failure rate curve shapes. However, Lloyd (1967), Ku et al. (1972), Hammitt (2004),

and McCool (1998), among others, have extended the use of the Weibull distribution to

other branches of statistics, such as reliability, risks, and quality control work.

A distribution with a general probability density function (pdf) of

f (x) =
β

η

�

x − ν

η

�β−1

exp

 

−

�

x − ν

η

�β
!

x > ν,β > 0,η > 0 (1)

1The Weibull distribution was first published in 1939 (Weibull 1939). It was an attempt to explain what
were (at that time) well known but unexplained facts about material strengths, namely that the relative
strength of a specimen decreases with increasing dimensions, and that its bending strength is greater than

its tensile strength.
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is known as a 3-parameter Weibull distribution. Its cumulative distribution function F(x)

and quantile function x(F) are defined as

F(x) = 1− exp

 

−

�

x − ν

η

�β
!

(2)

and

x(F) = η (− ln(1− F(x)))1/β + ν, (3)

respectively. The parameters ν, β , and η determine the location, shape and scale of the

distribution, respectively. For example, if we set the shape parameter β = 1 and the loca-

tion parameter ν = 0, the distribution changes its shape (say from skewed when β = 1.5

to exponential). The location for the two-parameter Weibull distribution is simply at the

origin, i.e., ν = 0.

3 Methods of estimation

In this section, we discuss the LM estimators in detail, followed MPS estimation. The

MLE method and the MoE methods and their variants due to Cohen & Whitten (1982) are

discussed briefly, each followed by the procedure adopted for the estimation.

3.1 L-Moment (LM)

It is standard statistical practice to summarize a probability distribution or an observed

data set by its moments or cumulants. Moment based methods, although they have long

been established in statistics, are not always satisfactory. It is sometimes difficult to reach

a conclusion about the shape of the distribution based on its higher order moments. The

alternative approach for describing the shape of a probability distribution can be based

on quantiles, known as L-moments, and was introduced by Hosking (1990). Historically,

it arose from modifications of the ‘probability weighted moments’ of Greenwood et al.

(1979).

Let X be a real-valued random variable with cumulative distribution function F(x) and

quantile function x(F), as defined in equations (2) and (3) respectively, and let X1:n ≤
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X2:n ≤ · · · ≤ Xn:n be the order statistics of a random sample of size n drawn from the

distribution of X . The L-moments of X are then defined as the quantities

λr ≡ r−1
r−1
∑

k=0

(−1)k





r − 1

k



 E(X r−k:r), where r = 1, 2, . . . .

The L in ‘L-moments’ emphasizes the fact that λr is a linear function of the expected order

statistics. The natural estimator of λr based on an observed sample of data is a linear com-

bination of the ordered data values, i.e., L-statistics. Following David & Nagaraja (2003),

the expectation of an order statistic can be written as

E(X j:r) =
r!

( j − 1)!(r − j)!

∫

x(F(x)) j−1(1− F(x))r− jdF(x). (4)

The first few (population) L-moments (λ1,λ2, . . . ) of a distribution are defined as

λ1 = E(X ) =

∫ 1

0

x(F)dF,

λ2 =
1

2
E(X2:2 − X1:2) =

∫ 1

0

x(F)(2F − 1)dF, (5)

λ3 =
1

3
E(X3:3 − 2X2:3 + X1:3) =

∫ 1

0

x(F)(6F2
− 6F + 1)dF,

λ4 =
1

4
E(X4:4 − 3X3:4 + 3X2:4 − X1:4) =

∫ 1

0

x(F)(20F3
− 30F2+ 12F − 1)dF.

Furthermore, the L-moment ratios are defined as τ3 = λ3/λ2 and τ4 = λ4/λ2, where τ3

and τ4 measure L-skewness and L-kurtosis respectively.

Of course, the L-moments defined above are for a probability distribution, while in practice

they are often estimated from a finite sample. Estimation is based on a sample of size n,

arranged in order of ascending magnitude. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the ordered

sample, which can be characterized better by the estimator of the probability weighted

moment βr . Following Hosking & Wallis (1997), an unbiased estimator of βr based on
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ordered samples is defined as

br = n−1





n− 1

r





−1
n
∑

j=r+1





j − 1

r



X j:n. (6)

The corresponding sample L-moments (ℓ1,ℓ2, . . . ) can then be defined from their popula-

tion counterparts in equation (5). They are found to appear as

ℓ1 = b0,

ℓ2 = 2b1 − b0,

ℓ3 = 6b2 − 6b1 + b0,

ℓ4 = 20b3 − 30b2 + 12b1 − b0,

and in general

ℓr+1 =

r
∑

k=0

pr,k bk, for r = 0, 1, . . . , n− 1,

where

pr,k = (−1)r−k





r

k









r + 1

k



 .

The first three population L-moments of the 3-parameter Weibull distribution, as per equa-

tion (5), are found to be

λ1 = ηΓ

�

1

β
+ 1

�

+ ν,

λ2 = ηΓ

�

1

β
+ 1

�
�

1−
1

21/β

�

, and

λ3 = ηΓ

�

1

β
+ 1

�
�

1−
3

21/β
+

2

31/β

�

,

where Γ above stands for gamma functions.
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Analogously to the usual method of moments, the L-moment method also consists of equat-

ing the first few population L-moments (λr) to the corresponding sample L-moments (ℓr),

thus obtaining as many equations as are needed to solve for the unknown population pa-

rameters, i.e.

λr = ℓr , r = 1, 2, . . . , p,

for the p parameters.

Since we aim to estimate the 3-parameter Weibull distribution, we require three equations

for this purpose. As was mentioned above, the equations can be obtained by equating the

first three population L-moments to the corresponding first three sample L-moments, i.e.,

λ1 = ℓ1, λ2 = ℓ2, and λ3 = ℓ3. Substituting the values of the population L-moments λ1,λ2,

and λ3 for the sample L-moments, we get

ℓ1 = ηΓ

�

1

β
+ 1

�

+ ν (7)

ℓ2 = ηΓ

�

1

β
+ 1

�
�

1−
1

21/β

�

(8)

ℓ3 = ηΓ

�

1

β
+ 1

�
�

1−
3

21/β
+

2

31/β

�

. (9)

Solving these equations do not yield explicit solution for the estimates of parameters. Fol-

lowing Goda et al. (2010), we used the L-skewness measure to estimate β :

τ3 =
λ3

λ2

=
1− 3

21/β +
2

31/β

1− 1

21/β

. (10)

Goda et al. (2010) estimates the parameters of Weibull distribution by fitting a polynomial

functional relation of τ3 with β . The fitting error in estimating the β was set to 0.3% for

0.6 < β < 3.0. The estimate of β using equation (10) is very similar to the Goda’s estimate

of β . The L-moment estimate of the β is actually the iterative solution of the above non-

linear equation, where τ3 is replaced by its sample counterpart, τ̂3 = ℓ̂3/ℓ̂2. Also note that

the Weibull distribution can be rewritten as a generalized extreme-value distribution, and

approximations for the Weibull β can be obtained from those for expressions for the GEV
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shape parameter given by Hosking et al. (1985) and Donaldson (1996).

After estimating β (say β̂) iteratively, the estimators of η and ν can easily be obtained by

substituting the value of β̂ in equations (7) and (8) respectively, to give:

η̂=
ℓ2

Γ

�

1

β̂
+ 1
��

1− 1

21/β̂

� (11)

and

ν̂= ℓ1 − η̂Γ

�

1

β̂
+ 1

�

. (12)

It is of interest to compare the method of L-moments with the asymptotically optimal

method of maximum likelihood. The method of L-moments is usually computationally

more tractable than the method of maximum likelihood, and requires less frequent re-

course to iterative procedures. Following Hosking (1990), the asymptotic standard errors

of L-moment estimators usually show the method of L-moments to be reasonably efficient,

compared to maximum likelihood estimators.

3.2 Maximum Likelihood Estimators (MLE)

The ML estimators are inconsistent and inefficient when β ≤ 1. The ML method gives

estimators that are asymptotically normal and efficient when β > 2, and is usually pre-

ferred for estimating all three of the parameters when β > 1 (see for instance Cheng &

Amin 1983, Johnson & Haskell 1983, Smith 1985). Using the density of x , as defined

in equation (1), the log-likelihood function for the Weibull distributed independent data

observations x1, x2, . . . , xn can be written as

L(x1, x2, . . . , xn;ν,β ,η) = n
�

logβ − β logη
�

+
�

β − 1
�

n
∑

i=1

log(x i − ν)−
1

ηβ

n
∑

i=1

�

x i − ν
�β

,

(13)

The function in equation (13) can be maximized with respect to the parameters ν,β , andη,

using a routine optimization criteria such as, for example, the free quasi-Newton algorithm.

However, the convergence issues with the MLE (where the function in equation (13) is flat
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at the optimal parameter values) are still there and are well documented; see for instance

Zanakis (1979), for details. In certain cases, the ML method may not have a solution; that

is, the likelihood function in (13) may have no stationary point for estimates to converge

to. In other cases, the estimates of the likelihood may converge to a saddle point, rather

than the maximum of the likelihood function (see Rockette et al. 1974, for details).

3.3 Maximum Product of Spacing (MPS)

The MPS estimation technique is based on maximizing the geometric mean of identically

distributed spacing of the sample yi, where yi = F(x i) = 1− exp

�

−

�

x i−ν

η

�β
�

for Weibull

distributed ordered sample x1 < x2 < · · · < xn. The method is documented in Cheng &

Amin (1983). The spacing is defined as:

Di = yi − yi−1 =

∫ x i

x i−1

f (x ,Θ)d x (i = 1, 2, . . . , n+ 1)

where x0 = F−1(0), xn+1 = F−1(1), and the
∑

Di = 1. The x0 and xn+1 can be the part

of the parameter space Θ, which includes β , η, and ν. The x0 and xn+1 are the endpoints

of the distribution (in fact they can be any values such that F(x0) = 0 and F(xn+1) = 1,

so they could be defined as x0 = −∞ and xn+1 =∞. The MPS method is to choose Θ to

maximize the geometric mean of the spacings

G =

(

n+1
∏

i=1

Di

)1/(n+1)

(14)

Aa per Cheng & Amin, we estimated the Weibull parameters by maximizing the logarithm

of above equation.

3.4 Modified Maximum Likelihood Estimators (MMLE)

Cohen & Whitten (1982) documents the modified maximum likelihood estimators, which

aim to produce satisfactory estimates of Wiebull’s parameters when MLE fails to do so.

They are based on the modified log-likelihood function and the modified moments condi-

tions and hence they referred the new estimators as the modified estimators. We discuss

their various modified estimators briefly here.

Akram and Hayat: February 2013 10



Comparison of estimators of the Weibull Distribution

3.4.1 MMLE1

In this case, the log-likelihood function in equation (13) is maximized with respect to the

parameters ν,β , and η by imposing the constraint

E
�

F(xr)
�

= F(xr),

where E(.) is the usual expectation, xr is the r th order statistic in a random sample of

size n, and F(xr) is the associated value of the cumulative distribution. Since E[F(xr)] =

r/(n+ 1), the above equation becomes

1− exp

 

−

�

xr − ν

η

�β
!

= r/(n+ 1).

As per Cohen & Whitten (1982) restricting r = 1 reduces the above equation to

−ln

�

n

n+ 1

�

=

�

x1 − ν

η

�β

. (15)

Maximizing the log-likelihood function in equation (13) by imposing the above constraint

is the basic methodology of Cohen and Whitten’s computational procedure.

3.4.2 MMLE2

In this method, the constraint given in equation (15) is replaced by

E(x1) = x1,

which becomes

ν+

�

η

n

�1/β

Γ

�

1

β
+ 1

�

= x1. (16)
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3.4.3 MMLE3

Likewise, the constraint given in equation (15) is replaced by

E(x) = x̄

which thus becomes

ν+ηΓ

�

1

β
+ 1

�

= x̄ . (17)

3.5 Moment Estimators (MoE)

The Weibull parameters cannot be expressed explicitly as functions of the conventional

raw moments. However, the parameters can easily be derived by using central moments.

The mean (µ) and the second and third central moments (µ2 and µ3) as functions of the

Weibull parameters are given below.

µ= ν+η Γ

�

1+
1

β

�

(18)

µ2 = η
2
�

Γ

�

1+
2

β

�

− Γ
2

�

1+
1

β

�

�

(19)

µ3 = η
3
�

Γ

�

1+
3

β

�

− 3Γ

�

1+
1

β

�

Γ

�

1+
2

β

�

+ 2Γ 3

�

1+
1

β

�

�

(20)

Interestingly, the coefficient of skewness (sk), given below, is invariant to location and scale

transformation of the data. As can be seen, it does not depend on the location parameter

ν or the scale parameter η.

sk =

√

√

√
µ2

3

µ3
2

=

√

√

√

√

√

√

�

Γ

�

1+ 3

β

�

− 3Γ
�

1+ 1

β

�

Γ

�

1+ 2

β

�

+ 2Γ 3
�

1+ 1

β

�
�2

�

Γ

�

1+ 2

β

�

− Γ 2
�

1+ 1

β

�
�3

(21)
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The shape parameter β can be estimated by finding the roots of equation (21) by replacing

sk with its sample counterpart. Once the parameter β is known (estimated), the other

parameters can easily be estimated using equations (18) and (19). Moment estimators are

easy to compute but are less efficient than MLE (see Bartoluccia et al. 1999).

3.6 Modified Moments Estimators (MMoE)

3.6.1 MMoE1

Following Cohen & Whitten (1982), the equation (21) is replaced by

E
�

F(xr)
�

= F(xr)

As in the case of MMLE1, r is restricted to 1, and the above equation becomes

−ln

�

n

n+ 1

�

=

�

x1 − ν

η

�β

(22)

Solving equations (18), (19) and (22), we obtain

µ2

(µ− x1)
2
=

Γ2 − Γ
2
1

�

Γ1 − (−ln(n/(n+ 1)))1/β
�2

, (23)

where Γk = Γ

�

1+ k

β

�

.

The β can be estimated by solving equation (23). Once the parameter β is estimated, the

other parameters follow from (18) and (19).

3.6.2 MMoE2

In this case, the equation (21) is replaced by

E[x1] = x1,

Akram and Hayat: February 2013 13
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which reduces to

ν+
ηΓ1

n1/β
= x1. (24)

Solving equations (18), (19) and (24), we obtain

µ2

(µ− x1)
2
=

Γ2 − Γ
2
1

�

Γ1(1− n−1/β)
�2

. (25)

Equation (25) solves for β by replacing µ and µ2 with their sample counterparts. The

other parameters, ν and η, follow from equations (18) and (19).

3.6.3 MMoE3

In this modification, equation (21) is replaced by

Median = xme

where xme is a sample median, which reduces to

ν+η(ln2)1/β = xme (26)

Solving equations (18), (19) and (26), we obtain

µ2

(µ− xme)
2
=

Γ2 − Γ
2
1

�

Γ1 − (ln2)1/β
�2

. (27)

Equation (27) can solve for β after its left-hand parameters replaced by their sample coun-

terparts. Remaining parameters (ν and η) follow from equations (18) and (19).

4 Monte Carlo simulations

To establish the small sample performance of various estimators, we conduct a sim-

ulation study. We chose parameter values which were consistent with most of the

Akram and Hayat: February 2013 14
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applications in various fields including quality control, engineering, actuarial sciences

and finance. The parameter values used in simulations are reported in the simulation

design of Table 1. The effect of various shape parameter values on the distribution is

depicted in Figure 1. We opted for eight values of the shape parameter, β= 0.5, 0.75,

Table 1: True parameters for simulation design.

Parameters

Application Distribution shape β η ν

Quality control Positively skewed 0.5 100 90
Quality control Positively skewed 0.75 100 90
Quality control Positively skewed 1.0 100 90
Quality control Positively skewed 1.5 100 90
Finance Positively skewed 3 100 90

Finance Negatively skewed 4 100 90
Finance Negatively skewed 6 100 90
Finance Negatively skewed 9 100 90

For each of the parameter combinations above, we computed the bias and root
mean squared errors (RMSE) for sample sizes of n = 10,20,50 and 100. The
results are based on 5000 simulations.

1, 1.5, 3, 4, 6 and 9, to cover the cases where the distribution is positively skewed

(for β ≤3, generally in both the engineering and finance cases, see for example Corrado

(1996), Corrado & Su (1996) and Corrado & Su (1997)), and negatively skewed for β ≥ 4.

Figure 1: Weibull density at various values of shape parameter β with η= 100 and ν= 90.
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We considered ν = 90 and kept the scale parameter η constant at 100, for consistency. The

sample sizes (n) considered are 10, 20, 50, and 100, in order to cover the small, medium,

and large sample sizes encountered in real life data.

In MLE, there is no guarantee that the location parameter, ν, will remain non-negative (see

for example, Green et al. (1994) and Smith & Naylor (1987)). Green et al. (1994) exam-

ined profile of the log-likelihood function to investigate why ML yield negative estimates

of ν. Smith & Naylor (1987) imposed the constraint of 0 < ν ≤ X1:n in their estimation

procedure. We imposed the same constraint on ν for MLE and as well for other estima-

tion methods for comparison purpose. We used estimates of MoM as starting values for

ML method, and used MLE estimates as starting values for the modified versions of ML

method. For the MPS method we used both MLE and MoE estimates as starting values;

the results did not depend on the choice of starting values.

4.1 Simulation design

For each sample size (n) and the specified values of the parameters (see Table 1), 5000

data sets are generated from the Weibull distribution, as per equation (1). From each

data set, the estimates of the parameters (β , η, ν) are obtained by the methods listed in

Section 3. For comparing the small sample performance of the estimators, as discussed

earlier we considered, bias and the RMSE. We compute the bias of an estimator as the

difference between an estimator’s expectation and the true value of the parameter being

estimated. Since the bias is the difference between the estimated and true values of the

parameter, it does not take the variation in estimates into account, which is measured

by the standard deviation of an estimator. If an estimator is biased, then the minimum

variance of an estimator does not make it the best estimator. Thus, in such a situation, the

RMSE is used to compare the different estimators, rather than using the unbiasedness and

minimum variance. The RMSE of an estimator is one way of quantifying the difference

between an estimator and the true value of the quantity being estimated. We take the

RMSE as the square-root of the sum of the variance and the squared bias of an estimator,

i.e., RMSE =
p

Var+Bias2, and thus assesses the quality of an estimator in terms of its

variation and unbiasedness together. It incorporates both the variance of an estimator and

its bias. For an unbiased estimator, the RMSE is simply its standard deviation. The RMSE
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will only be small when both the variance and the bias of an estimator are small.

In simulations, we considered only those cases where ML converged and the sample L-

skewness was ≥ –0.1699. The reason is, in practice, such a sample shall not be estimated

either by ML or LM. One choice would be the MPS method of Cheng & Amin, which con-

verges when ML fails and asymptotically equivalent to the MLE. This provides a fair go of

comparing the small sample performance among various estimators.

4.2 Findings

We initially considered twelve methods of estimation. Of all the methods, LSM, MMoE2,

MMoE3, and MML3 showed the worst small sample performance. So, we removed these

methods from our presentation. The methods (along with the simulation results) reported

in Tables 2–9 are: ML, LM, MML1, MML2, MoE, MMoE1, and the MPS. The smallest

the RMSE/bias the best the estimator is. The choice of the estimator in finite sample is

largely depended on estimating the shape parameter (β) accurately and precisely (jointly

measured by the RMSE) as much as possible. When the RMSE of two methods is close,

we preferred the method with the least bias between the two. Keeping this in view, we

analyzed the results. The key findings are as follows:

• β = 0.5: MPS estimator is the best choice among others. Interestingly, LM’s η estima-

tor dominates its performance in all sample sizes. Therefore, in applications where

variation parameter is of deep interest, LM has the tendency to meet the analyst

expectations with actually quite a reasonable estimate of β .

• β = 0.75: This time round MPS estimator surpasses all other estimators for all pa-

rameters.

• β = 1: The choice of estimator leans more towards MPS estimation method in terms

of bias only but for small sample of size n=10 where MLE seemingly snatching its

domination.

• β = 1.5: The MLE performs the best among all estimation methods in terms of bias

even in sample size as small as n=10. However, its performance is very close with

MPS in terms of RMSE of β . Since other MLE estimators (of η and ν) have smaller

bias/RMSE while lower bias in β , we rank MLE on top of MPS at this contest.
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• β = 3: With β getting closer to symmetric shape, as expected MLE beats all other

estimation methods in bias. Interestingly, MoE offers the least RMSE, however, with

almost doubling the β bias.

• β = 4: MLE clearly surpasses all other estimation methods in bias. MoE still offers

the least RMSE but with bias many times fold this time round.

• β = 6: We find the positive role of modified MLE when β is large. In large sample

of size n≥50, MMLE1 outweighs other estimation methods. While LM performance

is the best in small sample of sizes n=10, 20.

• β = 9: When β is really large, the story is virtually the same as for β = 6. LM perfor-

mance snatches back its domination from others in small sample of sizes n=10,20.

The MMLE1 takes the lead in large sample of sizes n=50, 100.

What we find is that as long as 0.5 ≤ β < 1.5, MPS is the right estimators in the sense of

offering the least bias/MSE of the parameters. The reason may lie on the fact that it works

(converges) when MLE fails in this range of β . For 1.5 ≤ β ≤ 4, MLE is the way forward

for estimating the 3-parameter Weibull distribution. For large values of shape parameter

such as β = 6 & 9 and in the sample of large size, MMLE1 is the right choice, and in the

small sample, LM estimator shall be used.

For the wide range of β values, the ML performance is quite notable even in small sample

sizes. At the outset, we thought that the MLE is a starting choice (among other estimators)

but now find that it can come on top of other methods for estimating the 3-parameter

Weibull distribution as long as its estimates see convergence. However, the main issue

with the MLE is the non-convergence of its estimates to true parameter values for small

values of β and/or n. For instance, with β = 1.5 for n=10 the non-convergence rate

of MLE was about 44%. The good news is the MPS estimator rises when MLE drops in

performance (especially towards convergence).

For researchers less concerned with the mighty accuracy of estimators and especially after

the reasonable estimator without being toggled between MLE and MPS, LM is the right

choice, which we find is not the best but always close (in terms of bias/RMSE) to its com-

petitor whether MLE, or MPS, or any other. So, we think the LM estimators for Weibull do

deserve its due credit. Just to get the meaning of non-convergence mark of 44% in above
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for MLE, there were only 2% cases in which the sample L-skewness <–0.1699 (the lowest

theoretical bound for Skewness of Weibull distributed random variable) in L-moment es-

timation. So, LM-bound researchers will almost always remain close to the target without

being too much worried about convergence and/or achieving theoretical bounds/limits.

4.3 Discussion

In some cases it is hard to know a priori whether the location parameter ν will be zero

or not — especially when the minimum observation of the observed data set is close to

zero, and/or when the standard deviation is large relative to the mean of the data. We

provide an example in the application section (from a published study) where the location

parameter ν was assumed to be zero where it seems not to be zero. In such cases, it

may be safer to apply the 3-parameter Weibull distribution than the 2-parameter Weibull

distribution. Thus, it is important to investigate which of the various estimation methods

are good enough at distinguishing the cases where ν is zero or close to zero when we fit

the 3-parameter Weibull distribution. We therefore considered ν = 0, 10 in order to cover

such cases with the same β and η values appeared in Table 1. The methodology for Monte

Carlo simulations is the same as adopted in previous subsection. The results are not shown

here for ν = 0, 10 and can be provided on request.

Moreover, it is almost a general practice to assume the location parameter of the Weibull

distribution to be positive (rather then zero) as long as X1:n > 0 (no matter how close

the first data observation is to zero); for instance, see Bartoluccia et al. (1999). A priori

believe of ν to be zero will simply mean the use of 2-Parameter Weibull distribution. And

the results of the best estimator in the previous section may sill be used. However in

situations, where a priori believe on ν cannot be established and one would be relying on

the 3-Parameter Weibull distribution then the results of best estimators in previous section

may not hold. We therefore provide a comparison of the performance of previously listed

methods under such scenarios of interest, i.e., when ν is actually zero or close to zero and

the researcher still persists to use 3-Parameter Weibull distribution.

Interestingly, the previous results (of subsection 4.2) do not hold. The reason is this time

MMoE1 comes out on top both in terms of bias and the RMSE for β ≥ 3. This may be

on account of MMoE1 estimates location parameter most accurately than others when it
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is zero or close to zero. The message is clear, if the true location parameter is zero or

close to zero, the best method of estimation in 3-Parameter Weibull distribution for β ≥ 3

is MMoE1. Moreover for β < 3, LM has performed overall well. However, MPS did not

perform that bad either. It is next to MMoE1 or LM in performance. The call of MMoE1

over LM was a tight one though.

5 Application

In this section we apply MLE, LM, MoE, MMLE1, MMLE2, MMoE1, and the MPS estimators

to the following two examples. The data are taken from published works.

Dataset 1 in Example 1 (see Table 10) is taken from McCool (1998). The data set 1 in Table

10 looks at the rolling contact fatigue, and was first used by Ku et al. (1972). In their study,

ten different test machines were employed to evaluate the effects of two lubricants on the

fatigue life. One lubricant met the specifications of military standard Mil-1-7808, while

the other met standard Mil-1-23699. Dataset 1 is the sorted lives in hours achieved using

the Mil-1-23699.

The data in Example 2 have been taken from Thoman et al. (1969), who used it to estimate

2-parameter Weibull distribution. Their MLE estimate of β reported after adjusting for the

small sample bias was 1.976. The data are the results of the tests, in millions of revolutions,

of 23 ball bearings. Lieblein & Zelen (1956) originally gave the results of tests of the

endurance of nearly 5000 deep-groove ball bearings. Thoman et al. (1969) basically used

the sample data for size 23, given on page 286 of Lieblein & Zelen (1956).

The attempt is made to use our findings of section 4.2 to get the best estimator of β (or the

true value of β) from real data in Table 10. The competition boils down to just two–MLE

and MPS as others can easily be ruled out due to β expected to be not greater than 2 in

these examples. In Example 1, we believe that β is less than or equal to 1 and the MPS

is the right estimator to use here. The reason is when β ≤ 1 (see Tables 2–4), the LM,

MoE, MMoE1 has overestimated β and MLE and MMLE2 underestimated β , and MMLE1

estimate is far off true β on average. The same pattern follows in this sample (Example

1) if we believe true β is less than or equal to 1. Nevertheless, MLE is not the ideal choice

when β ≤ 1 as the estimator is inconsistent and inefficient and MLE fails to converge. We
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can get an idea of it from ν estimate, which is failed to converge and is replaced by first

data observation. So, we believe MPS is the right estimation method and that its estimates

are more reliable than any others.

In Example 2, the choice is little difficult as it is the value of β (between 1.0 and 2) at

which both MLE and MPS are going to perform very closely. We leans towards MLE for

the reasons (i) it has converged and (ii) as per our simulation’s findings, its performance

is best when β is in the range of [1.5, 4] even for sample as small as n=10, on average.

The MLE estimate of ν (14.87) appears to provide the evidence of it as it is not as far

off the first observation of the dataset (17.88) as the same MPS estimate (8.65). In both

examples, the performance of LM is not bad either, that could be considered next best to

the MPS or ML method.

6 Conclusion

In this paper, we compare the small sample performance (in terms of bias and root mean

squared error) of L-moment (LM) estimation method with other estimation methods in a

simulation study for various shape parameter values of 3-parameter Weibull distribution.

The other estimation methods considered are Least Squared Estimation (LSE), Maximum

likelihood Estimation (MLE), Moment Estimation (MoE), Modified MLE (MMLE), Modified

MoE (MMoE), and the Maximum Product of Spacing (MPS). In simulations, we considered

only those cases in which MLE converged and the sample L-skewness ≥ –0.1699 along

with location parameter constraining to 0 < ν < X1:n for all methods. The reason is, in

practice, such a sample shall not be estimated either by MLE or LM. This provides a fair

basis of comparing the small sample performance of LM estimators among others.

We found that MPS performs well when the shape parameter β is less than 1.5, the case

where MLE is inconsistent and inefficient and may not exist at all. The MLE performs

relatively well when β is between 1.5 and 4, inclusive. This is because when β > 2 the

Fisher information matrix is finite, and the classical properties (consistency and efficiency)

hold. For relatively larger values of β , such as 6 and 9, LM method takes the lead in small

samples (n=10,20), and MMLE outweighs other estimation methods in large sample size

(n≥50). When ν is zero or close to zero, the MMoE for 3-Parameter Weibull performs the
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best as compared to others, whereas MPS estimator stands next behind it among many

others—although the call of MMoE over LM was a tough one.
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Table 2: True parameters are β = 0.5, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ 0.17 0.38 0.09 0.20 0.04 0.11 0.02 0.07
η̂ 23.39 107.94 17.40 70.61 10.03 39.44 6.77 27.06
ν̂ -14.22 27.14 -8.12 14.51 -4.24 6.56 -2.79 4.05

MLE

β̂ -0.13 0.28 -0.07 0.16 -0.01 0.09 0.01 0.06
η̂ 89.91 148.96 91.67 126.94 81.59 100.72 69.43 86.48
ν̂ 1.62 5.43 0.50 1.18 0.08 0.17 0.02 0.05

MMLE1

β̂ 0.88 3.47 0.60 2.55 0.51 1.38 0.66 1.32
η̂ 93.37 150.73 95.05 129.37 84.91 103.63 72.73 89.47
ν̂ -1.22 10.21 -1.73 6.55 -1.88 3.40 -2.29 3.62

MMLE2

β̂ -0.12 0.25 -0.06 0.16 0.01 0.08 0.07 0.09
η̂ -86.95 103.97 -94.33 95.50 -72.52 81.34 -12.68 59.45
ν̂ 1.56 5.30 0.49 1.18 0.06 0.17 -0.02 0.06

MoE

β̂ 0.63 0.74 0.42 0.49 0.26 0.31 0.19 0.23
η̂ 149.48 185.75 140.18 161.54 117.42 131.30 95.72 109.18
ν̂ -78.26 80.47 -77.38 79.48 -71.91 74.66 -62.36 66.33

MMoE1

β̂ 0.28 0.46 0.16 0.21 0.08 0.13 0.05 0.09
η̂ 51.20 117.03 36.23 75.75 22.81 45.66 15.63 32.63
ν̂ -7.63 15.84 -2.60 3.81 -2.38 3.13 -2.49 3.08

MPS

β̂ -0.01 0.24 -0.03 0.11 -0.02 0.06 -0.01 0.04
η̂ 43.22 110.30 43.12 90.91 53.51 88.19 52.52 80.10
ν̂ -0.64 9.12 0.15 1.13 0.03 0.15 0.01 0.05

Table 3: True parameters are β = 0.75, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ 0.29 0.72 0.12 0.30 0.05 0.14 0.03 0.09
η̂ 16.58 70.46 10.16 43.59 5.10 24.76 4.04 17.07
ν̂ -14.81 30.49 -7.15 14.92 -3.43 6.42 -2.37 4.01

MLE

β̂ -0.20 0.64 -0.21 0.31 -0.09 0.14 -0.03 0.08
η̂ 32.37 83.03 34.25 65.43 23.76 39.00 19.18 30.11
ν̂ 2.37 13.84 2.09 3.73 0.63 1.07 0.24 0.40

MMLE1

β̂ 1.32 4.40 1.71 4.62 2.05 4.17 2.20 3.96
η̂ 36.28 84.19 38.83 68.16 25.39 41.21 19.06 32.39
ν̂ -2.85 18.30 -4.32 12.92 -6.46 11.06 -7.52 10.73

MMLE2

β̂ -0.25 0.53 -0.22 0.29 -0.07 0.14 -0.02 0.07
η̂ -80.30 94.93 -93.59 96.23 -96.79 96.98 -93.74 93.94
ν̂ 2.35 13.38 2.09 3.73 0.62 1.07 0.23 0.39

MoE

β̂ 0.82 0.98 0.51 0.61 0.25 0.34 0.16 0.23
η̂ 96.57 120.09 77.21 96.36 46.00 61.35 30.98 43.24
ν̂ -66.19 70.73 -51.60 57.50 -30.66 36.30 -20.47 25.22

MMoE1

β̂ 0.43 0.89 0.14 0.27 0.05 0.13 0.03 0.09
η̂ 25.36 69.87 9.33 37.40 3.39 21.90 2.51 15.66
ν̂ -14.28 30.00 -2.44 6.24 -0.65 1.25 -0.70 0.92

MPS

β̂ 0.07 0.58 -0.03 0.19 -0.03 0.09 -0.02 0.06
η̂ 15.86 63.18 6.93 36.80 2.84 21.74 2.10 15.50
ν̂ -5.19 21.40 -0.06 4.36 0.12 0.92 0.05 0.33
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Table 4: True parameters are β = 1, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ 0.46 1.00 0.20 0.49 0.10 0.23 0.06 0.15
η̂ 18.04 60.39 9.28 37.61 5.97 20.77 4.26 14.15
ν̂ -17.40 36.76 -8.27 19.89 -3.96 8.61 -2.60 5.30

MLE

β̂ -0.10 0.97 -0.21 0.47 -0.10 0.23 -0.04 0.13
η̂ 10.44 62.17 3.97 40.01 1.42 21.40 0.55 13.48
ν̂ 2.07 21.70 3.50 7.04 1.70 2.59 0.90 1.31

MMLE1

β̂ 1.40 4.67 1.96 5.45 1.71 4.07 1.28 2.14
η̂ 14.87 62.75 8.50 41.72 4.18 23.19 4.79 15.94
ν̂ -4.29 24.55 -5.60 16.49 -9.38 17.19 -10.73 14.14

MMLE2

β̂ -0.30 0.78 -0.38 0.47 -0.30 0.38 -0.17 0.25
η̂ -56.79 84.95 -64.61 82.61 -65.46 81.96 -73.16 86.15
ν̂ 2.11 20.91 3.57 7.06 1.76 2.62 0.91 1.31

MoE

β̂ 0.93 1.14 0.55 0.74 0.28 0.40 0.17 0.26
η̂ 65.55 86.04 43.84 61.92 25.55 37.85 16.78 26.26
ν̂ -50.72 57.55 -33.57 41.48 -18.34 24.12 -11.79 16.27

MMoE1

β̂ 0.78 1.40 0.22 0.45 0.08 0.19 0.04 0.12
η̂ 32.83 68.13 7.93 32.18 2.77 16.89 1.37 11.49
ν̂ -27.22 46.06 -5.84 13.05 -1.17 2.94 -0.41 1.21

MPS

β̂ 0.25 0.85 0.04 0.35 0.00 0.15 0.00 0.10
η̂ 19.56 56.90 6.16 30.34 3.05 16.62 1.74 11.35
ν̂ -12.77 32.45 -2.54 10.58 -0.43 2.52 -0.13 1.10

Table 5: True parameters are β = 1.5, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ 0.71 1.40 0.33 0.81 0.10 0.36 0.06 0.22
η̂ 23.95 59.00 12.20 37.52 4.65 19.15 2.78 12.27
ν̂ -22.76 46.74 -10.89 28.70 -4.25 13.26 -2.47 7.94

MLE

β̂ 0.20 1.37 -0.03 0.66 -0.06 0.25 -0.04 0.16
η̂ -0.95 47.21 -6.65 27.73 -5.34 13.57 -3.30 8.86
ν̂ -0.63 33.10 4.61 16.48 3.58 6.85 2.26 4.04

MMLE1

β̂ 0.90 4.23 0.78 4.27 -0.17 1.27 -0.20 0.32
η̂ 3.38 46.82 -2.64 27.99 -2.02 13.12 0.23 8.77
ν̂ -6.21 32.79 -1.30 18.39 1.75 7.47 1.11 3.33

MMLE2

β̂ -0.27 1.12 -0.50 0.81 -0.51 0.62 -0.48 0.58
η̂ -15.80 62.48 -13.25 42.66 -3.26 17.37 -0.30 11.19
ν̂ -0.66 31.87 4.77 16.47 3.82 6.96 2.61 4.27

MoE

β̂ 0.90 1.11 0.57 0.83 0.26 0.47 0.14 0.29
η̂ 36.31 55.22 25.93 42.03 13.64 25.37 8.13 16.67
ν̂ -31.17 42.11 -21.94 32.32 -11.65 19.14 -6.86 12.29

MMoE1

β̂ 1.50 2.14 0.48 0.96 0.09 0.29 0.03 0.17
η̂ 53.80 78.11 17.70 39.12 2.98 14.49 1.09 8.91
ν̂ -49.28 65.86 -15.33 30.04 -2.65 7.89 -1.00 4.00

MPS

β̂ 0.52 1.22 0.14 0.64 -0.02 0.26 -0.02 0.16
η̂ 29.32 59.80 10.93 32.10 2.43 14.01 1.15 8.86
ν̂ -24.17 46.35 -7.58 22.55 -1.34 7.29 -0.57 3.86
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Table 6: True parameters are β = 3, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ 0.68 2.17 0.52 1.80 0.32 1.22 0.17 0.80
η̂ 16.85 58.07 12.49 47.59 7.93 32.88 4.23 22.19
ν̂ -17.64 54.47 -12.83 44.83 -7.95 30.92 -4.15 20.80

MLE

β̂ 0.13 2.25 0.13 1.77 0.04 1.03 -0.02 0.62
η̂ -7.63 52.26 -4.15 42.60 -2.44 26.13 -2.22 16.38
ν̂ 4.58 47.76 2.42 39.38 1.79 24.11 1.94 14.98

MMLE1

β̂ -0.27 2.83 -0.33 1.88 -0.24 0.99 -0.12 0.79
η̂ -3.68 50.08 0.35 41.04 3.09 26.53 3.64 18.46
ν̂ 0.96 43.67 -0.53 36.46 -1.86 23.74 -2.48 16.94

MMLE2

β̂ -0.54 1.99 -0.39 1.62 -0.33 1.10 -0.34 0.78
η̂ -6.94 51.49 -1.35 42.10 1.91 26.62 2.20 16.93
ν̂ 4.12 45.22 2.04 37.60 1.87 23.64 2.40 14.77

MoE

β̂ -0.25 0.57 -0.25 0.57 -0.11 0.45 -0.04 0.39
η̂ -9.20 27.19 -8.48 21.86 -4.02 15.70 -1.49 12.47
ν̂ 8.09 25.01 7.65 20.29 3.64 14.37 1.39 11.40

MMoE1

β̂ 2.67 3.49 1.62 2.72 0.93 1.87 0.49 1.16
η̂ 61.40 79.69 38.15 65.10 22.68 45.90 12.36 29.01
ν̂ -60.57 76.69 -37.70 62.53 -22.26 43.98 -11.97 27.45

MPS

β̂ 0.49 2.01 0.37 1.71 0.24 1.13 0.11 0.69
η̂ 24.50 60.72 16.66 49.28 10.14 31.73 5.53 19.26
ν̂ -23.68 57.21 -16.11 46.54 -9.66 29.80 -5.12 17.84

Table 7: True parameters are β = 4, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ 0.49 2.82 0.53 2.44 0.56 1.95 0.38 1.46
η̂ 9.39 58.14 10.39 51.59 11.70 42.07 7.76 31.53
ν̂ -10.59 55.85 -10.96 49.81 -11.74 40.85 -7.78 30.54

MLE

β̂ -0.20 2.93 0.09 2.49 0.25 1.82 0.10 1.21
η̂ -14.42 55.51 -5.10 48.77 1.96 36.83 0.46 25.13
ν̂ 11.47 52.26 3.53 46.60 -2.40 35.56 -0.73 24.17

MMLE1

β̂ -0.78 2.73 -0.59 2.05 -0.26 1.49 -0.16 1.17
η̂ -10.20 52.42 -0.68 46.32 6.93 36.53 6.00 26.54
ν̂ 7.56 47.39 0.65 42.79 -4.99 33.62 -4.08 24.06

MMLE2

β̂ -0.85 2.81 -0.50 2.20 -0.19 1.70 -0.23 1.29
η̂ -12.58 53.81 -2.11 47.16 6.48 37.20 5.29 26.40
ν̂ 10.38 49.78 3.12 44.20 -2.37 34.29 -0.45 23.86

MoE

β̂ -1.22 1.31 -1.17 1.25 -1.00 1.06 -0.88 0.92
η̂ -27.76 34.45 -26.45 30.71 -21.97 24.44 -19.19 20.87
ν̂ 25.79 32.85 24.88 29.29 20.93 23.44 18.30 19.99

MMoE1

β̂ 2.93 3.86 2.30 3.82 1.70 2.98 1.19 2.34
η̂ 53.25 73.40 41.96 70.48 33.19 58.97 23.41 46.49
ν̂ -53.35 72.01 -42.03 69.03 -32.93 57.73 -23.21 45.50

MPS

β̂ 0.30 2.62 0.43 2.37 0.56 1.91 0.35 1.36
η̂ 17.77 61.24 16.39 54.58 16.43 43.30 10.27 30.20
ν̂ -17.88 59.23 -16.37 52.90 -16.11 42.07 -10.05 29.25

Akram and Hayat: February 2013 28



Comparison of estimators of the Weibull Distribution

Table 8: True parameters are β = 6, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ -0.25 4.13 0.17 3.68 0.68 3.27 0.73 2.82
η̂ -5.66 58.86 2.24 55.63 9.95 49.39 10.85 42.83
ν̂ 4.73 57.44 -2.73 54.58 -10.16 48.66 -10.92 42.29

MLE

β̂ -1.17 4.44 -0.41 3.81 0.31 3.20 0.41 2.60
η̂ -27.21 60.64 -11.79 55.04 1.76 46.56 4.55 38.39
ν̂ 25.01 58.38 10.68 53.64 -2.19 45.79 -4.73 37.82

MMLE1

β̂ -1.96 3.66 -1.40 2.95 -0.54 2.39 -0.22 2.02
η̂ -21.45 55.76 -6.26 51.08 7.39 44.41 10.70 37.91
ν̂ 20.25 52.48 7.20 48.77 -5.13 42.05 -7.76 35.19

MMLE2

β̂ -1.33 5.14 -1.03 3.62 -0.37 2.83 -0.16 2.42
η̂ -23.81 57.06 -7.90 52.12 5.36 45.70 8.67 38.87
ν̂ 22.57 55.26 9.54 50.81 -1.75 43.80 -4.05 36.66

MoE

β̂ -3.19 3.22 -3.17 3.20 -2.99 3.01 -2.82 2.84
η̂ -49.82 51.82 -48.53 49.67 -44.98 45.61 -42.00 42.58
ν̂ 47.99 50.31 46.90 48.23 43.56 44.24 40.80 41.37

MMoE1

β̂ 2.45 4.06 3.35 5.92 2.82 4.89 2.47 4.34
η̂ 26.19 50.05 41.89 75.96 38.21 67.79 34.34 61.15
ν̂ -26.48 49.50 -42.12 75.12 -38.27 67.21 -34.28 60.61

MPS

β̂ -0.21 4.11 0.23 3.68 0.84 3.26 0.89 2.79
η̂ 6.36 63.63 11.46 60.16 17.61 52.35 16.51 44.00
ν̂ -6.62 62.48 -11.58 59.15 -17.59 51.68 -16.41 43.45

Table 9: True parameters are β = 9, η= 100,ν= 90

n=10 n=20 n=50 n=100
Bias MSE Bias MSE Bias MSE Bias MSE

LM

β̂ -1.74 6.20 -1.23 5.62 0.38 5.20 1.06 4.85
η̂ -20.03 62.23 -13.45 58.56 3.64 54.50 10.97 50.92
ν̂ 19.21 61.34 12.79 57.86 -3.83 54.08 -11.02 50.60

MLE

β̂ -2.96 6.91 -1.88 5.96 -0.06 5.20 0.72 4.72
η̂ -39.19 67.34 -24.46 60.86 -3.40 53.04 5.91 48.56
ν̂ 37.49 65.72 23.38 59.86 3.08 52.58 -6.02 48.23

MMLE1

β̂ -3.58 6.51 -3.09 5.10 -1.45 4.02 -0.68 3.42
η̂ -32.02 60.75 -17.75 55.53 2.04 49.81 10.88 46.37
ν̂ 31.98 59.74 19.17 54.49 0.36 48.10 -7.85 44.13

MMLE2

β̂ -0.95 8.39 -1.49 7.25 -0.69 5.29 -0.15 4.29
η̂ -36.74 62.74 -20.84 56.24 0.42 51.32 9.96 47.97
ν̂ 33.00 61.02 20.61 57.06 2.29 51.21 -5.98 46.95

MoE

β̂ -6.18 6.19 -6.19 6.20 -5.96 5.97 -5.63 5.65
η̂ -65.71 66.43 -65.01 65.40 -61.54 61.88 -57.49 57.93
ν̂ 64.12 65.01 63.41 63.89 60.33 60.68 56.52 56.95

MMoE1

β̂ 1.46 5.57 4.99 9.23 4.15 7.68 3.95 7.06
η̂ 2.75 38.67 39.96 79.00 37.77 72.64 37.91 69.00
ν̂ -3.13 38.82 -40.45 78.69 -37.89 72.32 -37.92 68.69

MPS

β̂ -1.32 6.41 -0.73 5.72 0.86 5.22 1.53 4.92
η̂ -5.53 67.51 -0.58 63.15 13.74 57.61 19.23 53.75
ν̂ 5.12 66.91 0.16 62.60 -13.78 57.25 -19.18 53.42
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Table 10: Parameters estimates under various methods.

Example 1 Example 2

β η ν β η ν

MLE 0.75 37.20 90.40 1.59 63.89 14.87

LM 0.95 37.96 85.34 1.44 60.13 17.65

MoE 1.86 73.22 59.20 1.68 68.72 10.87

MMLE1 20.34 53.64 42.61 0.99 67.26 15.09

MMLE2 0.59 41.79 89.11 0.97 66.94 15.20

MMoE1 1.05 38.56 86.33 1.94 78.76 2.38

MPS 0.80 37.11 88.44 1.61 72.87 8.65

Dataset 1: 90.4, 94.2, 97.8, 101.8, 104.6, 113,118, 154.9,181.3, 186.2

Dataset 2: 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.48, 51.84, 51.96,

54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,

105.12, 105.84, 127.92, 128.04, 173.40

Datasets 1 and 2 are used for parameter estimation in Examples 1 and 2 respectively.
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