UNDERGRADUATE ENGINEERING

2014

Melbourne | Geelong | Warrnambool | Off campus

CIVIL
ELECTRICAL AND ELECTRONICS
MECHANICAL
MECHATRONICS AND ROBOTICS
MEDICAL TECHNOLOGY
SPORTS TECHNOLOGY

ROSS PARRY
Bachelor of Engineering – Civil, see page 6.
Deakin’s Bachelor of Engineering has been developed in accordance with the requirements of Engineers Australia and graduates are eligible for Graduate Professional Membership, which means your degree could take your career almost anywhere in the world.

Engineering at Deakin gives you flexibility. You take a general first year, then specialise in one of four major sequences – civil, electrical and electronics, mechanical, or mechatronics and robotics – allowing you to concentrate on the aspect of engineering that interests you most. Plus you can choose to study on campus (located learning) or off campus, full time or part time.

Our engineering courses focus on the employability of our graduates and the future needs of industry. We expect that our graduates will be well-rounded engineers with significant exposure to professional engineering practices, well-equipped to meet the challenges of the future, including those caused by climate change and sustainability issues.

This booklet will outline the courses we offer in engineering, key features of our courses and career opportunities you can expect from completing a degree at Deakin.

Choosing a university course is an important decision – and we are here to help. We encourage you to gather as much information as possible to help you make an informed decision about which course is best for you.

If you need more information, please contact us on 1300 DEGREE (1300 334 733), email enquire@deakin.edu.au or visit deakin.edu.au.

We look forward to seeing you at Deakin!

The Deakin team
Using this booklet
This booklet provides you with detailed information about Deakin’s undergraduate courses in engineering (for domestic students), including study areas, career opportunities, course overviews and course structures. It is designed to be read in conjunction with the 2014 Undergraduate Course Guide, which gives an overview of all Deakin’s undergraduate courses, study options, support services and campuses.
Deakin University also produces course guides specifically for international students. To request a copy phone Deakin International on +61 3 9627 4877 or email deakin-international@deakin.edu.au.

Applying to Deakin is easy
You can apply for most of Deakin’s undergraduate courses (bachelor’s degrees) commencing in Trimester 1 through the Victorian Tertiary Admissions Centre (VTAC). We also offer courses commencing at other times of the year, for example Trimester 2 (commencing in August) and Trimester 3 (commencing in November), that require a direct application to Deakin. Whether you are a current Year 12, TAFE, private provider or mature-age student, currently studying at another university, in the workforce, taking a gap year or a graduate, visit www.vtac.edu.au or deakin.edu.au/study-at-deakin for details.

Find out more
If you need more information, please phone 1300 DEGREE (1300 334 733), email enquire@deakin.edu.au or visit deakin.edu.au.
You can also connect with us on social media, order other publications and visit us. Turn to page 24 for more information.
You can choose from a range of specialisations
As a Deakin engineering student you will undertake common subjects in the first year of your four-year course to give you a broad base of engineering knowledge and help you make a more informed decision about your future career. At the end of this year, you will choose to specialise in civil, electrical and electronics, mechatronics and robotics or mechanical engineering. Deakin’s Bachelor of Engineering is distinctive in that all of the specialism streams are available in both on and off-campus mode, so you can choose the study mode that best fits your lifestyle, and even switch between these study modes throughout your course.

Learn engineering in the real world
An engineering qualification from Deakin is based on design-focused learning.
Civil engineers make modern life possible. Civil engineering students are involved with planning and analysis, requiring real-life community considerations and implications, and gain relevant industry knowledge through a range of site visits and field trips.
Electrical and electronics engineers are highly dependent on by society as they are involved in designing the equipment and systems that provide reliable power, communications and electronic systems.
Mechanical engineering is the application of technology and science to the design, production and operation of systems, mechanical devices and machinery, and is associated with many fields of interest. Mechanical engineers are involved with almost every design imaginable, especially complex items like cars, robots and aeroplanes.
Mechatronics and robotics engineers integrate electronic devices with mechanical design and information technology. They design mechanical systems such as chassis-stabilising systems, cameras, anti-lock brakes, engine control units, disk drives, service and surgical robots, and artificial hearts.

Deakin’s new Bachelor of Engineering Science brings together studies in engineering, physiology, exercise and sport science in a qualification that could lead to a variety of exciting career opportunities in the fields of sports or medical technology, with a focus on human performance. The course provides you with the theoretical foundation, technical skills and expertise needed to design and develop sports equipment, instrumentation and other sports-related products, as well as medical and physiological instrumentation, prosthetics and other health care devices.

Engage in hands-on learning
In engineering at Deakin, theory is complemented by hands-on, design-focused learning to help create career-ready graduates. Professional practice units also provide you with opportunities for workplace visits, practical experience, industry learning and the establishment of valuable networks.

The Science, Engineering and Built Environment Work-Integrated Learning (WIL) Program provides the opportunity to apply to undertake a full-time or part-time discipline-specific industry placement as part of your course.
For more information, please visit deakin.edu.au/sebe/students/wil.

Our courses have industry input
At Deakin, we engage with the engineering industry to ensure our courses are relevant and responsive to the needs of employers in the sector.

Our curriculum is informed by the industry leaders and employer representatives on our Advisory Board, to ensure it is relevant and to help us define and develop the skill set that employers expect of top graduates.

Collaborative research partnerships, as well as strong educational partnerships with industry, provide you with a custom-made study program to suit your professional development needs.

You will be a sought-after graduate
At Deakin’s School of Engineering we focus on the employability of our graduates and the future needs of industry. We aim for our graduates to be well-rounded engineers with significant exposure to professional engineering practices and able to meet future challenges caused by climate change and sustainability issues.

We offer flexible study options
At Deakin we offer you the flexibility and choice to make your learning experience fit with your lifestyle, work and personal commitments.
We are one of only a few universities in Australia to offer engineering in both on-campus (located learning) and off-campus mode, allowing you to choose the study option that suits you best.

Off-campus students experience campus life during specified activities requiring on-campus attendance (approximately two weeks duration for each year of equivalent full-time study). See online course structure at deakin.edu.au/courses for more details.

Learn in first-class facilities
As a Deakin engineering student you will have access to recently refurbished, fully-equipped laboratories and cutting-edge computer-aided software that is used in modern industrial workplaces. Accessible lecturers help you get the most out of your university education and provide a friendly learning environment.

We engage in innovative engineering research
A further advantage of studying engineering at Deakin is the opportunity to learn from world-standard researchers. Engineering at Deakin is different as it is research led, rather than simply research informed. Deakin is a significant leader in a number of engineering-focused research areas, most notably manufacturing and materials.
As well as the opportunity to learn from leading researchers, there is also the opportunity to access facilities at the Geelong Technology Precinct, also located at Deakin’s Geelong Waurn Ponds Campus.
Our engineering courses have professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives our degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Experience the world while you study
Give your degree a competitive edge with a Deakin Study Abroad Program. The Study Abroad and Exchange Office offers various programs including exchange, study abroad, short-term study programs, study tours and international volunteering opportunities, which allow you to study overseas for a few weeks, a trimester, or a year as part of your Deakin degree.

For more information on study abroad, please visit deakin.edu.au/current-students/student-exchange/exchange.

We offer a range of scholarships
Deakin University offers scholarships for academic excellence, access and equity, accommodation and Aboriginal and Torres Strait Islanders, ensuring higher education is accessible for all members of the community.

Scholarships in the Faculty of Science, Engineering and Built Environment for engineering students include:

IGNITED (Initiative for a Girls’ Network in Information Technology and Engineering @ Deakin): for first-year female students entering an undergraduate course within the School of Engineering or School of Information Technology, valued at $5000 per year over the duration of the course, conditional upon full-time enrolment and satisfactory academic progress. Recipients will also be assigned an academic mentor.

Barwon Water Civil Engineering Scholarship: two scholarships awarded to Year 12 students completing secondary school within the Barwon Water catchment area and entering the Bachelor of Engineering or related combined courses, majoring in the civil engineering stream.

Dean’s Scholars Program: aims to recognise, reward and nurture high-achieving students who have recently completed Year 12 and who have been admitted through VTAC.

For more information on scholarships, please visit deakin.edu.au/scholarships.

Global Science and Technology Program
In 2013, the Faculty of Science, Engineering and Built Environment introduced a new program designed to help Science, Engineering and Built Environment students realise their dreams of international study.

The Global Science and Technology Program aims to recognise, reward and support high-achieving Science, Engineering and Built Environment students who would like to conduct part of their studies overseas to help them develop new skills and a broader world view.

Successful applicants will be offered a $3000 scholarship to assist with travel costs and will be required to participate in the Deakin Global Citizenship Program.

For more information, please visit deakin.edu.au/sebe/global.

AN ELITE ATHLETE FRIENDLY UNIVERSITY
As a member of the Elite Athlete Friendly University (EAFU) Network, Deakin is dedicated to supporting elite athletes in their quest to achieve academic success alongside the demands of training and competition.

We enable recognised elite athlete students to negotiate assessment deadlines, lecture and tutorial attendance and study loads to integrate with sporting commitments. Student athletes may also be able to take several leaves of absence in order to meet sporting commitments and extend the amount of time normally allowed to complete a course.

For more information, please visit deakin.edu.au/future-students/why-deakin/eafu.
Deakin’s engineering graduates are entering an industry in which their skills and knowledge are in high demand. Depending on your chosen area of specialisation, you may find opportunities in a range of sought-after careers with organisations in the electronics, telecommunications, power generation and distribution, automotive, manufacturing, construction, mining, resources, aeronautical, aerospace, water resource management, railroad and ship building industries.

You may find employment designing, constructing and project managing critical infrastructure such as roads, railways and water supply; operating and maintaining mechanical systems for aerospace, aircraft or railroads; or developing and controlling mechatronics and robotics systems that are revolutionising industries such as manufacturing, aircraft control and the automotive industry.

Recent Deakin engineering graduates have been employed by a range of companies including, but not limited to, the following:

- Alcoa
- Barwon Water
- Boeing
- Ford
- Godfrey Hurst
- Harrop Engineering
- Hatch Associates
- Holden (General Motors)
- Industrial Control Technology Pty Ltd
- Insight Engineering
- Kempe Engineering
- Melbourne Water
- Rio Tinto
- Shell
- Toyota.

NOLENE BYRNE
LECTURER
SCHOOL OF ENGINEERING
GEELONG WAURN PONDS CAMPUS

“I have focused strongly on my academic career, spending time overseas conducting research. Today, I collaborate with industry, solving the problems that it faces. Currently, I hold several industry funded projects investigating environmentally benign processing routes.

The learning environment at Deakin is flexible – we understand that many students have a full-time job. When I teach, I adopt an informal approach. I encourage students to ask questions and I operate an ‘open door policy.’ I also communicate with my students using a variety of media. The students make my job rewarding. I take a lot of pleasure out of watching students develop and become confident as their knowledge base increases, and I enjoy teaching inquisitive, engaged students.

My advice to any student trying to decide which academic field to study is to be driven by what interests them. For me, I knew I was interested in how things worked and how I could improve that, so materials engineering was an obvious choice for me.”
COURSES AND ATARS

<table>
<thead>
<tr>
<th>Melbourne Burwood Campus</th>
<th>Geelong campuses</th>
<th>Warrnambool Campus</th>
<th>Off campus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering – Civil</td>
<td>61.95</td>
<td>61.95</td>
<td>Yes*</td>
<td>8</td>
</tr>
<tr>
<td>Engineering – Electrical and Electronics</td>
<td>57.10</td>
<td>57.10</td>
<td>Yes*</td>
<td>9</td>
</tr>
<tr>
<td>Engineering – Mechanical</td>
<td>60.50</td>
<td>60.50</td>
<td>Yes*</td>
<td>10</td>
</tr>
<tr>
<td>Engineering – Mechatronics and Robotics</td>
<td>63.30</td>
<td>63.30</td>
<td>Yes*</td>
<td>11</td>
</tr>
<tr>
<td>Engineering Scholars Program*</td>
<td>80.00*</td>
<td>80.00*</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Engineering Science – Medical Technology</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Engineering Science – Sports Technology</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Global Science and Technology Program</td>
<td>80.00*</td>
<td>80.00*</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Science and Technology (Dean’s Scholars Program in engineering)</td>
<td>90.00*</td>
<td>90.00*</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Combined courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering/Commerce</td>
<td>75.70</td>
<td>75.70</td>
<td>Yes*</td>
<td>16</td>
</tr>
<tr>
<td>Engineering/Information Technology</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes*</td>
<td>17</td>
</tr>
<tr>
<td>Engineering/Science</td>
<td>63.20</td>
<td>63.20</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Geelong campuses = Geelong Waurn Ponds Campus and Geelong Waterfront Campus.
N/A = Not available or not applicable. The course is offered at this campus. Where no ATAR is available it may mean that other admission requirements apply. Please refer to the course entry for more information.
* Available for high achieving students with a minimum ATAR of 80.00.
** Minimum ATAR.
* You will be required to participate in an on-campus residential at the Geelong Waurn Ponds Campus.
If a clearly-in ATAR is not listed it means that the course is not available at that campus.
For more information on ATARs please visit deakin.edu.au/future-students/year12.
Bachelor of Engineering majors
Deakin’s Bachelor of Engineering provides you with a broad-based foundation with a common first year, before specialising in your chosen field of civil, electrical and electronics, mechanical or mechatronics and robotics engineering.

Civil engineering
A civil engineering degree gives you the building blocks to design, construct and maintain our community. Learn to plan and build the infrastructure systems that are necessary for our day-to-day life.

Deakin’s civil engineering degree covers the broad range of civil engineering disciplines including engineering materials, structural engineering, water engineering, geotechnical engineering and transport engineering. This major sequence is designed to provide you with practical industry knowledge in the design, construction and project management of roads, airports, railways, water supply and sewerage systems, water resources management, buildings and other infrastructures.

Electrical and electronics engineering
Electrical and electronics engineers are responsible for the design, construction and project management of power generation, distribution, scheduling and usage; automation and factory control; electronic systems and devices; and integrated circuit design.

This program covers the broad areas of electrical and electronics engineering disciplines, including renewable electrical power generation; smart distribution; materials science; urban, industrial, rural and regional power usage; the role of energy production and efficiency in climate change adaptation; Very Large Scale Integration (VLSI); control systems; and electronic device design.
Mechanical engineering

Product development and innovation are key drivers for Australian industry. To meet this demand, Deakin’s mechanical engineering degree brings together leading computer-aided engineering technologies and advanced materials to provide one of the most relevant mechanical engineering degrees in Australia.

The course draws strongly on Deakin’s world-class research teams in automotive engineering and advanced materials, with a practical, hands-on approach that could include an opportunity to work on the Formula Society of Automotive Engineering (SAE) race car, designed and built by our degree students. Along the way, you will develop project management, communication and financial management skills, as well as a solid understanding of product and process modelling and designing for sustainability.

Mechatronics and robotics engineering

Mechatronics and robotics are combined in one degree at Deakin, providing a broader-based course that can lead to more career choices. The course combines electronic, mechanical and robotic engineering, with mechanical engineering and robotics featuring more strongly than in other degree programs. It offers studies in autonomous systems, robotic system design and industrial communication design. The course is tailored to industry needs and has close links through strong research programs, cutting-edge technology and facilities, and project-based learning.

Engineering Scholars Program

The Bachelor of Engineering (Engineering Scholars Program) offers students who achieve an ATAR of 80.00 (or equivalent) and above, all of the sequences in the Bachelor of Engineering with additional opportunities for paid industry internships or research placements, and mentoring from our world-class researchers. On your VTAC application, you can place the Bachelor of Engineering (Engineering Scholars Program) one preference higher than the Bachelor of Engineering to increase your chances of getting into engineering at Deakin.

Bachelor of Engineering Science majors

Deakin’s new Bachelor of Engineering Science brings together studies in engineering, physiology, and exercise and sport science in a qualification that could lead to a variety of exciting career opportunities in the fields of sports or medical technology, with a focus on human performance. The course provides you with the theoretical foundation, technical skills and expertise needed to design and develop sports equipment, instrumentation and other sports-related products, as well as medical and physiological instrumentation, prosthetics and other health care devices.

Sports technology – electrical

In this major sequence, you will specialise in electrical engineering studies. The course is tailored to industry needs and has close links through strong research programs, cutting-edge technology and facilities, and project-based learning. You can access state-of-the-art robotics and sensor systems, and through your final-level projects, gain an introduction to the emerging haptics research and sensors area.

Sports technology – mechanical

Product development and innovation are important drivers for the Australian sports industry. To help meet this need, this course provides a relevant degree that brings together knowledge of leading computer-aided engineering technologies and advanced materials. The course draws heavily on Deakin’s world-class research teams in design and advanced materials, with a practical hands-on approach that includes an opportunity to work on various research projects in your final year and gain a solid understanding of product and process modelling and designing for sustainability.

Medical technology

In this major sequence, you will specialise in medical technology studies. The medical device and diagnostics industry is the focus of this major sequence. This is an industry that is expected to advance rapidly into new fields of science and engineering, facilitating new innovations in biomedical and health care systems.
Civil engineers are responsible for the design, construction and project management of roads, airports, railways, water supply and sewerage systems, water resources management, buildings and other infrastructures. The Bachelor of Engineering – Civil covers the broad range of civil engineering disciplines including engineering materials, structural, water, geotechnical and transport engineering. You will be involved in planning and analysis, requiring real-life community considerations, and gain relevant industry knowledge through site visits and field trips. You will undertake common subjects in your first year, providing a broad knowledge base, before specialising in civil engineering.

The Bachelor of Engineering is awarded at pass or honours level to high-achieving students.

Professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Career opportunities
Civil engineering graduates can expect to gain employment in design, construction and project management of roads, airports, railways, harbours, water supply and sewerage systems; with water authorities, government bodies, public works departments and in consultancy.

Work-Integrated Learning
As an engineering student you will have the opportunity to undertake at least 12 weeks of suitable practical experience during your course. Practical experience is normally undertaken during the vacation periods.

Course structure
You must complete 32 credit points of study.

Level 1
- SEB121 Engineering Practice
- SED102 Engineering Graphics and CAD
- SEE010 Safety Induction Program (0-credit-point safety unit)
- SEE103 Electrical Systems
- SEM111 Engineering Materials 1
- SEP101 Engineering Physics
- SIT172 Programming for Engineers
- SIT194 Introduction to Mathematical Modelling
- SIT199 Applied Algebra and Statistics

Level 2
- SEB223 The Professional Environment for Engineers and Scientists
- SXM218 Mechanics of Fluids
- SXM222 Stress Analysis
- SXM223 Engineering Mechanics
- SEP291 Engineering Modelling
- SEV215 Water Systems
- SEV217 Engineering Geology and Surveying
- SEV222 Hydrology and Hydraulics

Level 3
- SEB324 Project Management
- SEP490 Engineering Work Experience (0 credit points)
- SEV320 Theory of Structures
- SEV323 Steel Structures
- SEV328 Water and Wastewater Treatment
- SEV352 Geo Mechanics 1
- SEV353 Reinforced Concrete Structures
- SEV354 Transportation Engineering
- SEV362 Geo Mechanics 2

Level 4
- SBJ441 Engineering Project A
- SBJ446 Engineering Project B (2 credit points)
- SEV414 Transportation Infrastructure
- SEV454 Civil Engineering Design 1
- SEV455 Civil Engineering Design 2

plus two credit points of engineering elective units

Highly recommended elective units
- SET401 Advanced Topics in Engineering 1
- SET402 Advanced Topics in Engineering 2

*You will be required to participate in an on-campus residential at the Geelong Waurn Ponds Campus.

N/A Refer to page 5.
BACHELOR OF ENGINEERING – ELECTRICAL AND ELECTRONICS

<table>
<thead>
<tr>
<th>BACHELOR OF ENGINEERING – ELECTRICAL AND ELECTRONICS</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAKIN CODE</td>
<td></td>
<td>S367</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES
VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English and a study score of at least 20 in mathematical methods (CAS) or specialist mathematics.

YEAR 12 PREREQUISITES
VTAC Personal History online and demonstrated mathematical background equivalent to Year 12 level.

NON-YEAR 12 REQUIREMENTS
VTAC Personal History online and demonstrated mathematical background equivalent to Year 12 level.

Electrical and electronics engineers are highly depended on by society as they are responsible for designing reliable power, communications and electronic equipment and systems. The Bachelor of Engineering – Electrical and Electronics covers a broad range of disciplines including renewable electrical power generation; smart distribution; materials science; urban, industrial, rural and regional power usage; the role of energy production and efficiency in climate change adaptation; Very Large Scale Integration (VLSI); control systems; and electronic device design. You will undertake common subjects in your first year, providing a broad knowledge base, before specialising in electrical and electronics engineering.

The Bachelor of Engineering is awarded at pass or honours level to high-achieving students.

Professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Career opportunities
Electrical and electronics engineering graduates can expect to gain employment in power generation and distribution, electronic design, factory control, local government, public works and consulting.

Work-Integrated Learning
As an engineering student you will have the opportunity to undertake at least 12 weeks of suitable practical experience during your course. Practical experience is normally undertaken during the vacation periods.

Highly recommended elective units
SET401 Advanced Topics in Engineering 1
SET402 Advanced Topics in Engineering 2

You will be required to participate in an on-campus residential at the Geelong Waurn Ponds Campus.

For more information and to click through to unit descriptions, please visit deakin.edu.au/courses.
COURSES

BACHELOR OF ENGINEERING – MECHANICAL

DEAKIN CODE ATAR INDICATIVE FIRST YEAR FEE
S367 60.50 $8360 (CSP)

YEAR 12 PREREQUISITES
VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English and a study score of at least 20 in mathematical methods (CAS) or specialist mathematics.

NON-YEAR 12 REQUIREMENTS
VTAC Personal History online and demonstrated mathematical background equivalent to Year 12 level.

Mechanical engineering is the application of technology and science to the design, production and operation of systems, mechanical devices and machinery. Mechanical engineers are involved with almost every design imaginable, especially complex items like cars, robots and aeroplanes.
The Bachelor of Engineering – Mechanical draws heavily on Deakin’s world-class research teams in automotive engineering and advanced materials.
Throughout the course you will develop project management, communication and financial management skills, as well as a solid understanding of product and process modelling and designing for sustainability. You will undertake common subjects in your first year, providing a broad knowledge base, before specialising in mechanical engineering.
The Bachelor of Engineering is awarded at pass or honours level to high-achieving students.

Professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Career opportunities
Mechanical engineering graduates can expect to gain employment in the automotive, aircraft, ship-building, aerospace and railroad industries, supplier companies and other leading manufacturing and design companies.

Work-Integrated Learning
As an engineering student you will have the opportunity to undertake at least 12 weeks of suitable practical experience during your course. Practical experience is normally undertaken during the vacation periods.

Course structure
You must complete 32 credit points of study.

Level 1
SEB121 Engineering Practice
SED102 Engineering Graphics and CAD
SEE010 Safety Induction Program (0-credit-point safety unit)
SEE103 Electrical Systems
SEM111 Engineering Materials 1
SEP101 Engineering Physics
SIT172 Programming for Engineers
SIT194 Introduction to Mathematical Modelling
SIT199 Applied Algebra and Statistics

Level 2
SEB223 The Professional Environment for Engineers and Scientists
SED202 Engineering Design and CAD
SEM212 Materials 2
SEM218 Mechanics of Fluids
SEM222 Stress Analysis
SEM223 Engineering Mechanics
SEM314 Principles of Thermodynamics
SEP291 Engineering Modelling

Level 3
SBB324 Project Management
SED302 Computer Aided Engineering
SEE321 Electro-Mechanical Systems
SEE334 Control Engineering
SEM313 Manufacturing Technology
SEM327 Dynamics of Machines
SEM329 Materials Selection and Performance
SEM422 Advanced Stress Analysis

Level 4
SED402 Advanced Design Methodologies
SB1441 Engineering Project A
SB1446 Engineering Project B (2 credit points)
SEM405 Heat Transfer
SEM406 Modelling and Simulation
SEP490 Engineering Work Experience (D credit points)
plus two credit points of engineering elective units

Highly recommended elective units
SET401 Advanced Topics in Engineering 1
SET402 Advanced Topics in Engineering 2

* You will be required to participate in an on-campus residential at the Geelong Waurn Ponds Campus.

N/A Refer to page 5.
BACHELOR OF ENGINEERING – MECHATRONICS AND ROBOTICS

<table>
<thead>
<tr>
<th>DEAKIN CODE</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S367</td>
<td>63.30</td>
<td>$8360 (CSP)</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES
VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English and a study score of at least 20 in mathematical methods (CAS) or specialist mathematics.

NON-YEAR 12 REQUIREMENTS
VTAC Personal History online and demonstrated mathematical background equivalent to Year 12 level.

You will be required to participate in an on-campus residential at the Geelong Waurn Ponds Campus.

N/A Refer to page 5.

Mechatronics and robotics engineers integrate electronic devices with mechanical design and information technology. They design mechanical systems such as chassis-stabilising systems, cameras, anti-lock brakes, engine control units, disk drives, service and surgical robots, and artificial hearts. This course combines electronic, mechanical and robotic engineering, with mechanical engineering and robotics featuring more strongly than in other degree programs. It offers studies in autonomous systems, robotic system design and industrial communication design. You will undertake common subjects in your first year, providing a broad knowledge base, before specialising in mechatronics and robotics engineering.

The Bachelor of Engineering is awarded at pass or honours level to high-achieving students.

Professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Career opportunities
Mechatronics and robotics engineering graduates can expect to gain employment in areas including factory control, automation and control system design, as electronic control systems engineers or robotics engineers.

Work-Integrated Learning
As an engineering student you will have the opportunity to undertake at least 12 weeks of suitable practical experience during your course. Practical experience is normally undertaken during the vacation periods.

> Continued on next page …
COURSES

Course structure
You must complete 32 credit points of study.

Level 1
- SEB121 Engineering Practice
- SED102 Engineering Graphics and CAD
- SEE010 Safety Induction Program (0-credit-point safety unit)
- SEE103 Electrical Systems
- SEM111 Engineering Materials 1
- SEP101 Engineering Physics
- SIT172 Programming for Engineers
- SIT194 Introduction to Mathematical Modelling
- SIT199 Applied Algebra and Statistics

Level 2
- SEB223 The Professional Environment for Engineers and Scientists
- SEE202 Digital Electronics
- SEE206 Measurement and Instrumentation
- SEE208 Modern Power Generation Systems Design
- SEE215 Microcontroller Principles
- SEM222 Stress Analysis
- SEM223 Engineering Mechanics
- SEP291 Engineering Modelling

Level 3
- SEB324 Project Management
- SEE312 Electronic Data Communications
- SEE320 Microcontroller System Design
- SEE321 Electro-Mechanical Systems
- SEE325 Robotics and Applications
- SEE326 Artificial Intelligence for Autonomous Systems
- SEE334 Control Engineering
- SEM327 Dynamics of Machines

Level 4
- SEE412 Industrial Data Communication and Design
- SEE426 Robotic System Design
- SEJ441 Engineering Project A
- SEJ446 Engineering Project B (2 credit points)
- SEM433 Mechatronic Design
- SEP490 Engineering Work Experience (0 credit points)
- plus two credit points of engineering elective units

Highly recommended elective units
- SET401 Advanced Topics in Engineering 1
- SET402 Advanced Topics in Engineering 2

BACHELOR OF ENGINEERING (ENGINEERING SCHOLARS PROGRAM)

<table>
<thead>
<tr>
<th>DEAKIN CODE</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80.00*</td>
<td>$8360 (CSP)</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES
- VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English and a study score of at least 20 in mathematical methods (CAS) or specialist mathematics. Minimum ATAR of 80.00.

The Engineering Scholars Program is available to students who have achieved a minimum ATAR of 80.00 (or equivalent). It is designed to extend high-achieving students by providing them with opportunities to work with Deakin's leading researchers and industry partners on cutting-edge projects. Students will be assigned a mentor and have additional opportunities for paid industry internships or research placements.

Professional recognition
Deakin's Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Career opportunities
Refer to the course entries for the Bachelor of Engineering (S367) on pages 8–12 for career opportunities.

Course structure
Refer to the course entries for the Bachelor of Engineering (S367) on pages 8–12 for course structure.

* Minimum ATAR.
Bachelor of Engineering Science – Medical Technology

<table>
<thead>
<tr>
<th>Deakin Code</th>
<th>ATAR</th>
<th>Indicative First Year Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>S302</td>
<td>N/A</td>
<td>$8370 (CSP)</td>
</tr>
</tbody>
</table>

Year 12 Prerequisites
- VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English.
- VTAC Personal History online.

Career Opportunities
Graduates of this course can expect to gain employment in areas including medical research, medical instrumentation, prosthetics and in health organisations.

Work-Integrated Learning
You will have the opportunity to take part in industry-based learning internships and a final-year project to help you gain workplace experience and develop valuable networks.

Course Structure
You must complete 24 credit points of study. Elective units may be taken from across the University.

Level 1
- HBS109 Human Structure and Function
- SED102 Engineering Graphics and CAD
- SEE010 Safety Induction Program (O-credit-point safety unit)
- SEE103 Electrical Systems
- SEP122 Physics for the Life Sciences
- SIT190 Introductory Mathematical Methods
- SLE010 Laboratory and Fieldwork Safety Induction Program (O-credit-point safety unit)
- SLE111 Cells and Genes
- SLE133 Chemistry In Our ‘World’
- or
- SLE155 Chemistry for the Professional Sciences

Level 2
- HSE010 Exercise and Sport Laboratory Safety (O-credit-point safety unit)
- HSE202 Biomechanics
- SEE202 Digital Electronics
- SEE215 Microcontroller Principles
- SEP101 Engineering Physics
- SLE211 Principles of Physiology
- SLE221 Anatomy and Physiology
- SLE251 Research Methods and Data Analysis

Level 3
- SEE320 Microcontroller System Design
- SEE321 Electro-Mechanical Systems
- SBE344 Technology Project
- SLE234 Microbiology
- SLE335 Industrial Applications of Science

For more information and to click through to unit descriptions, please visit deakin.edu.au/courses.
This Bachelor of Engineering Science – Sports Technology is designed to develop technology-focused scientists capable of creating engineering solutions to sport-related problems. The course provides you with the theoretical foundation, technical skills and expertise needed to design and develop sports equipment, instrumentation and other sports-related products. The course is designed for technically-minded students who are not interested in traditional engineering programs. The subjects are mostly prescribed, with engineering, physiology and exercise and sport science subjects studied at each level. You will specialise in your choice of mechanical or electrical engineering studies. As a graduate you will have the opportunity to undertake further studies in honours (research) and PhD programs.

Career opportunities
Graduates of this course can expect to gain employment in a wide range of organisations, such as equipment manufacturers, professional sports associations and research institutions.

Work-Integrated Learning
You have the opportunity to take part in industry-based learning, internships and a final-year project to help you gain workplace experience and develop valuable networks.

Course structure
You must complete 24 credit points of study. Elective units may be taken from across the University.

SPORTS TECHNOLOGY – ELECTRICAL

Career opportunities
Graduates may be employed as electronic control systems scientists or robotics scientists, and work in areas including human performance monitoring and control system design.

Level 1
- HBS109 Human Structure and Function
- SED102 Engineering Graphics and CAD
- SEE010 Safety Induction Program (D-credit-point safety unit)
- SEE103 Electrical Systems
- SEP122 Physics for the Life Sciences
- SIT190 Introductory Mathematical Methods
- SLE010 Laboratory and Fieldwork Safety Induction Program (D-credit-point safety unit)
- SLE111 Cells and Genes
- SLE133 Chemistry In Our World
- or
- SLE155 Chemistry for the Professional Sciences
- plus one elective unit

^Note: Students who have not completed Year 12 Chemistry or equivalent may choose to undertake SLE133 Chemistry in Our World in Trimester 1. Students who have completed Year 12 Chemistry or equivalent may choose to undertake SLE155 Chemistry for the Professional Sciences in Trimester 2.

Level 2
- HSE010 Exercise and Sport Laboratory Safety (D-credit-point safety unit)
- HSE201 Exercise Physiology
- HSE202 Biomechanics
- SEE202 Digital Electronics
- SEE206 Measurement and Instrumentation
- SEE215 Microcontroller Principles
- SEM111 Engineering Materials 1
- SLE251 Research Methods and Data Analysis
- plus one elective unit

Level 3
- HSE304 Physiology of Sport Performance
- HSE311 Applied Sports Science 1
- HSE314 Applied Sports Science 2
- HSE323 Clinical and Sport Biomechanics
- SEE320 Microcontroller System Design
- SEJ344 Technology Project
- plus two elective units

SPORTS TECHNOLOGY – MECHANICAL

Career opportunities
Graduates may find career opportunities as sports equipment designers, in support roles in engineering organisations and in Occupational Health and Safety (OH&S) roles.

Level 1
- HBS109 Human Structure and Function
- SED102 Engineering Graphics and CAD
- SEE010 Safety Induction Program (D-credit-point safety unit)
- SEE103 Electrical Systems
- SEP122 Physics for the Life Sciences
- SIT190 Introductory Mathematical Methods
- SLE010 Laboratory and Fieldwork Safety Induction Program (D-credit-point safety unit)
- SLE111 Cells and Genes
- SLE133 Chemistry In Our World
- or
- SLE155 Chemistry for the Professional Sciences
- plus one elective unit

^Note: Students who have not completed Year 12 Chemistry or equivalent may choose to undertake SLE133 Chemistry in Our World in Trimester 1. Students who have completed Year 12 Chemistry or equivalent may choose to undertake SLE155 Chemistry for the Professional Sciences in Trimester 2.

Level 2
- HSE010 Exercise and Sport Laboratory Safety (D-credit-point safety unit)
- HSE201 Exercise Physiology
- HSE202 Biomechanics
- SED202 Engineering Design and CAD
- SEE206 Measurement and Instrumentation
- SEM111 Engineering Materials 1
- SEP101 Engineering Physics
- SLE251 Research Methods and Data Analysis
- plus one elective unit

Level 3
- HSE304 Physiology of Sport Performance
- HSE311 Applied Sports Science 1
- HSE314 Applied Sports Science 2
- HSE323 Clinical and Sport Biomechanics
- SEJ344 Technology Project
- SEM223 Engineering Mechanics
- plus two elective units

N/A Refer to page 5.
GLOBAL SCIENCE AND TECHNOLOGY PROGRAM

<table>
<thead>
<tr>
<th>DEAKIN CODE</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>refers to specific course entry</td>
<td>80.00* refers to specific course entry</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES
Applicants must refer to the prerequisites for their specific engineering preference. Minimum ATAR of 80.00.

EXTRA REQUIREMENTS
All applicants must complete and submit the Global Science and Technology Program Supplementary Information Form (deakin.edu.au/sebe/global).

The Global Science and Technology Program aims to recognise, reward and nurture high-achieving students who want to conduct part of their studies overseas through an exchange or study abroad program. A minimum ATAR of 80.00 is required for entry into this program. Successful applicants will be offered a scholarship of $3000 to assist with travel costs and will participate in the Deakin Global Citizenship Program. Scholarships will be awarded across the faculty to students undertaking any course offered by the Faculty of Science, Engineering and Built Environment, admitted to the program through VTAC.

Course structure
You are able to select any one of the undergraduate degrees offered by the Faculty of Science, Engineering and Built Environment through this single, campus-based VTAC preference.

Refer to specific course entries and campus offerings in this booklet from the list of engineering courses.

* Minimum ATAR.

In engineering at Deakin, theory is complemented by hands-on, design-focused learning to help create career-ready graduates.

SCIENCE AND TECHNOLOGY (DEAN’S SCHOLARS PROGRAM)

<table>
<thead>
<tr>
<th>DEAKIN CODE</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>refers to specific course entry</td>
<td>90.00* refers to specific course entry</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES
Applicants must refer to the prerequisites for their specific engineering preference. Minimum ATAR of 90.00.

The Dean’s Scholars Program aims to recognise, reward and nurture high-achieving students. A minimum ATAR of 90.00 is required for entry into this program. Scholarships will be awarded annually across the faculty to Year 12 students admitted to the program through VTAC. Successful applicants will also be offered a professional development program and have a high chance of being selected for the Science, Engineering and Built Environment Industry-Based Learning Program.

Course structure
You are able to select any one of the undergraduate degrees offered by the Faculty of Science, Engineering and Built Environment through this single, campus-based VTAC preference. Refer to specific course entries and campus offerings in this booklet from the list of engineering courses.

* Minimum ATAR.

For more information and to click through to unit descriptions, please visit deakin.edu.au/courses.
JAKE KAYS

BACHELOR OF ENGINEERING – CIVIL/
BACHELOR OF COMMERCE
GEELONG WAURN PONDS CAMPUS

I chose to study at Deakin because it offered me both engineering and commerce in a five-year combined course. I also liked the fact that you could study in summer over a third trimester that could allow you to finish your degree faster or spread out your work load.

One of the things I enjoy most is that we get to do both theory and practicals. The civil engineering labs have just had a face lift and look great. With the new equipment, we have completed fluid mechanics practicals and explored what we learnt in theory.

When I graduate I want to pursue a career as a structural engineer. I love how buildings, bridges and structures constantly push the boundaries of science and technology and I want to be a part of building the future.

Course structure
You must complete 44 credit points of study, which must include specified engineering and commerce core units and a major sequence from each degree.
Bachelor of Engineering major sequences and units
Refer to the Bachelor of Engineering (S367) course entries on pages 8–12 for details of major sequences and units available.

Bachelor of Commerce units
Core units
Level 1
- MAA103 Accounting for Decision Making
- MAE101 Economic Principles
- MAE102 The Global Economy
- MAP101 Fundamentals of Finance
- MCA101 Communication for Academic Studies (0 credit points)
- MS101 Business Information Systems
- MS171 Business Analytics
- ML101 Business Law
- MMM132 Management

Level 2
- MMH299 Business Communication
- MK277 Marketing Management

Elective units
- MS291 Community Based Volunteering A
- MS292 Community Based Volunteering B
- MS390 Business Internship A
- MS391 Business Internship B
- MS394 Industry Based Learning in Business A
- MS395 Industry Based Learning in Business B
- MS396 Industry Based Learning in Business C
- MS397 Industry Based Learning in Business D
- MME101 Business Academic Skills
- MMM233 Business and the Environment
- MMK241 Entrepreneurship and Innovation
- MMM385 Business in Asia
- MPH111 Introduction to Property
- MMK308 Sport Marketing
- SHD201 Creating Sustainable Futures
- SHD301 Creating Sustainable Futures

Bachelor of Commerce major sequences
- Accounting
- Accounting information systems
- Business information systems
- Commercial law
- eBusiness
- Economics
- Finance
- Financial planning
- Human resource management
- Interactive marketing
- International management
- International trade and economic policy
- Management
- Marketing
- Quantitative business analysis
- Supply chain management

* You will be required to undertake one or more units in online or off-campus mode.

For more information on these major sequences, please refer to the 2014 Undergraduate Business Career Booklet.

BACHELOR OF ENGINEERING/ BACHELOR OF INFORMATION TECHNOLOGY

<table>
<thead>
<tr>
<th>DEAKIN CODE</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D375</td>
<td>N/A</td>
<td>$8,370 (CSP)*</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES
- VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English and a study score of at least 20 in mathematical methods (CAS) or specialist mathematics.

YEAR 12 REQUIREMENTS
- VTAC Personal History online and demonstrated mathematical background equivalent to Year 12 level.

* You will be required to participate in an on-campus residential at the Geelong Waurn Ponds Campus.

N/A Refer to page 5.

This combined course enables you to specialise in a niche field by gaining two professional and highly complementary degrees. You may combine one of the engineering major sequences – civil, electrical and electronics, mechanical or mechatronics and robotics engineering – with a major sequence in information technology, for example, computer science, game development, mathematical modelling, networking, security or software development.

Professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world. The Bachelor of Information Technology is professionally accredited with the Australian Computer Society (ACS).

Career opportunities
The Bachelor of Engineering/Bachelor of Information Technology offers you the chance to broaden your career opportunities after graduation. The opportunities available will depend on the major sequences you take within your course. For information on career outcomes for the Bachelor of Engineering, please see pages 8–11.

Career outcomes for the Bachelor of Information Technology can include object-oriented and procedural programmer, database and web designer and manager, network manager, component integrator, project manager, consultant, system analyst, multimedia designer, games developer and web programmer.

Work-Integrated Learning
For the Bachelor of Engineering component of the course, you must obtain an aggregate of at least 12 weeks of suitable practical experience during your course. Practical experience is normally undertaken during the vacation periods.

Course structure
You must complete 44 credit points of study, which must include specified engineering and information technology core units and a major sequence from each degree.

> Continued on next page ...
Bachelor of Engineering major sequences and units
Refer to the Bachelor of Engineering (S367) course entries on pages B–12 for details of major sequences and units available.

Bachelor of Information Technology units
Core units
Level 1
SIT010 Safety Induction Program (0-credit-point safety unit)
SIT101 Fundamentals of Information Technology
SIT103 Introduction to Database Design
SIT104 Introduction to Web Development
SIT105 Critical Thinking and Problem Solving
Level 2
SIT202 Computer Networks
SIT223 Information Technology Professional Skills
Level 3
SIT302 Project
SIT374 Project Management

Bachelor of Information Technology major sequences
• Computer science
• Game development
• Mathematical modelling
• Networking
• Security
• Software development
For more information on these major sequences, please refer to the 2014 Undergraduate Information Technology Career Booklet.

Bachelor of Engineering/Bachelor of Science

<table>
<thead>
<tr>
<th>DEAKIN CODE</th>
<th>ATAR</th>
<th>INDICATIVE FIRST YEAR FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D372</td>
<td>63.20</td>
<td>$8370 (CSP)</td>
</tr>
</tbody>
</table>

YEAR 12 PREREQUISITES

VCE units 3 and 4 – a study score of at least 25 in English (ESL) or 20 in any other English and a study score of at least 20 in mathematical methods (CAS) or specialist mathematics.

NON-YEAR 12 REQUIREMENTS

VTAC Personal History online and demonstrated mathematical background equivalent to Year 12 level.

This combined course will strengthen your engineering degree with complementary studies in science. You may combine one of the engineering major sequences – civil, electrical and electronics, mechanical or mechatronics and robotics engineering – with a science stream, for example, biology, biological chemistry, chemistry, mathematical modelling or zoology. Only the mathematical modelling major sequence is available off campus.

Professional recognition
Deakin’s Bachelor of Engineering is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Career opportunities
The Bachelor of Engineering/Bachelor of Science offers you the chance to broaden your career opportunities after graduation. The opportunities available will depend on the major sequences you take within your course. For information on career outcomes for the Bachelor of Engineering, please see pages B–11.

As a graduate of Deakin’s Bachelor of Science you may find work in government institutions in roles such as quality assurance, occupational health and safety, research, planning, management or marketing; science-related industries, working in pharmaceutical production or pharmaceutical sales; in biomedical science areas such as research or hospital and laboratory science; quality assurance in analytical and diagnostic laboratories; the food industry in quality control; environment and natural resources, teaching, information technology, mathematics or science journalism to name a few.

Work-Integrated Learning
As part of the Bachelor of Engineering component of this course you must obtain an aggregate of at least 12 weeks of suitable practical experience during your course. Practical experience is normally undertaken during the vacation periods.

As part of the Bachelor of Science component of this course you are required to complete a Professional Practice component. This will allow you to gain valuable industry experience, giving you the opportunity to apply and consolidate knowledge gained in your course, experience workplace culture and practices, explore career options and develop a professional network.

Course structure
You must complete 44 credit points of study, which must include specified engineering and science core units and a major sequence from each degree.

Bachelor of Engineering major sequences and units
Refer to the Bachelor of Engineering (S367) course entries on pages B–12 for details of major sequences and units available.

For more information and to click through to unit descriptions, please visit deakin.edu.au/courses.
Bachelor of Science units

Core units

Level 1
EES101 Communicating Science
SLE010 Laboratory and Fieldwork Safety Induction Program (0-credit-point safety unit)
SLE103 Ecology and the Environment
SLE111 Cells and Genes

Chemistry units

Select one unit from:
SLE133 Chemistry in Our World^
SLE155 Chemistry for the Professional Sciences^

^ Note: Students who have not completed Year 12 Chemistry or equivalent may choose to undertake SLE133 Chemistry in Our World in Trimester 1. Students who have completed Year 12 Chemistry or equivalent may choose to undertake SLE155 Chemistry for the Professional Sciences in Trimester 2.

Physics units

Select one unit from:
SEP101 Engineering Physics
SEP122 Physics for the Life Sciences

Quantitative skills

Levels 1 and 2
Select one unit from:
HPS201 Research Methods in Psychology A
SIT191 Introduction to Statistics
SIT194 Introduction to Mathematical Modelling
SLE251 Research Methods and Data Analysis

Professional Practice

Level 3
Select at least one unit from:
SLE314 Research Project
SLE335 Industrial Applications of Science
SLE352 Community Science Project
SLE390 Professional Practice in Bioscience
STP321 Industry Based Learning – Science

Bachelor of Science major sequences

• Biological chemistry C
• Biology C
• Chemistry X
• Mathematical modelling C X
• Zoology C

For more information on these major sequences, please refer to the 2014 Undergraduate Science Career Booklet.

For the latest information about new courses at Deakin University, please visit deakin.edu.au.

SAM CREEK

BACHELOR OF ENGINEERING – MECHANICAL/ BACHELOR OF SCIENCE
GEELONG WAURN PONDS CAMPUS

‘At uni, I gained a scholarship enabling me to do a summer research program at Deakin with one of my lecturers on an exciting biomedical/engineering project, through which I learnt some great skills and received excellent training.

I really enjoyed a lot of the Computer-Aided Design (CAD) classes in my course. Creating 3D models of products and learning about the entire process of the design of a product was really eye-opening and fascinating. I learnt a lot and have gained a passion to work in this field of engineering.

The engineering degree in particular helped provide me with a framework for how to diagnose problems and work through them. This, along with skills such as project management, report writing and CAD drafting, are all abilities that will enable me to gain employment as an engineer. The added advantage of doing a science degree provides me further diversity in career choice.

In the future, I would like to specialise as a design engineer within the transport industry and improve product designs.’
Pathway programs provide alternative entry options that take into consideration previous qualifications or your time in the workforce. Deakin has pathway options for a range of applicants including current Year 12 students, International Baccalaureate (IB) students and non-school leavers. Examples for engineering students include:

- **Year 12**
- **TAFE**
 - For example, complete an: Advanced Diploma of Engineering Technology, Electronic Engineering or Computer Systems Engineering, or a Diploma of Engineering Technology.
- **Enrol in**
 - single units
- **Workforce**
 - Complete single units
- **Apply for university entry via VTAC**
- **Enrol in**
 - Bachelor of Engineering
 - Receive up to 12 credit points with an above mentioned advanced diploma or up to 8 credit points with an above mentioned diploma.
- **Complete**
 - Bachelor of Engineering
- **Postgraduate studies including**
 - Master of Engineering
- **Apply to Deakin**
 - (conditions apply)
- **Career options**
 - advanced manufacturing industries
 - aerospace
 - aircraft
 - aircraft control and navigation industry
 - automated vehicles and automotive industry
 - automation
 - automotive electronics
 - consulting engineer
 - construction companies
 - consumer and industrial electronics design
 - control electronics
 - control system design
 - digital signal processing
 - factory control
 - local government bodies
 - radio frequency (RF) system design
 - railroad
 - road and traffic authorities
 - ship building
 - telecommunications
 - Very Large-Scale Integrated (VLSI) circuit design
 - water authorities

Please note applicants are subject to entry requirements. For more examples of pathways into Deakin University, please visit deakin.edu.au/pathways.
TAFE pathways
If you complete a diploma or advanced diploma at TAFE in a field similar to the Deakin course of your choice, you can then apply for the Deakin course and you may receive credit for your TAFE qualification. In most cases, this will reduce the number of units you need to complete to obtain your Deakin qualification. Plus, upon graduation, you’ll have not one, but two qualifications.

Deakin has formal pathway programs and special credit arrangements with its four partner TAFEs (Box Hill Institute and Chisholm in Melbourne, South West TAFE in Warrnambool and The Gordon in Geelong) however all TAFE qualifications are considered for application to Deakin.

The assessment of credit is based on a number of factors and is determined on an individual basis. To find out what credit you are entitled to, please visit deakin.edu.au/courses/credit.

Melbourne Institute of Business and Technology (MIBT)
Deakin University and the Melbourne Institute of Business and Technology (MIBT) have been in partnership for more than 15 years. MIBT can provide an excellent pathway to Deakin for students who do not meet the admission requirements for Deakin University courses. MIBT is located at Deakin’s Melbourne Burwood Campus, Geelong Waterfront Campus and Geelong Waurn Ponds Campus, allowing you the opportunity to gain access to Deakin’s facilities and services and get involved in uni life.

MIBT may provide a direct pathway to second-year study at Deakin (conditions apply). MIBT diplomas are equivalent to the first year of a Deakin University undergraduate degree. On successful completion of a diploma and meeting University academic entrance criteria, students may be eligible for entry to second year of the relevant Deakin University undergraduate degree.

Single unit (non-award) study
You may wish to undertake a single unit of study at Deakin (without being enrolled or accepted into a course). These units are subject to fees and do not lead to a degree, but may be credited towards a degree if you succeed in gaining entry to a course at a later stage.

For more information, please visit deakin.edu.au/study-at-deakin/apply/other-types-of-application/apply-for-a-single-subject

DID YOU KNOW?
Deakin offers a range of scholarships to support students in their studies. For more information, please visit deakin.edu.au/scholarships.

For more information on pathways into Deakin University, please visit deakin.edu.au/pathways.
Applying to study at Deakin University is easy. Whether you are a current Year 12 student, TAFE graduate, mature-age student, non-school leaver, or international student studying VCE in Australia, you can apply to study a Deakin undergraduate course through the Victorian Tertiary Admissions Centre (VTAC) (unless stated otherwise in the VTAC CourseSearch www.vtac.edu.au or under the individual course entries in this booklet).

When you are applying for a course, make sure you check all of the entry requirements carefully. Most courses have prerequisites and some have additional requirements that you will need to complete to be eligible for selection into that course. For prerequisite and extra requirement information, please visit the VTAC website www.vtac.edu.au.

For more information on how to apply, including special consideration and deferment, please visit deakin.edu.au/study-at-deakin/apply.

DID YOU KNOW?
If your application to study at Deakin is successful but it’s not the right time for you to commence university, you can defer your studies in most Deakin courses for up to two years. This means you can postpone your studies to work, travel or volunteer and still retain your university place. For more information, please visit deakin.edu.au/study-at-deakin/apply/enrol-defer-withdraw-or-transfer.

HOW TO APPLY

DANIEL HOFMANN
BACHELOR OF ENGINEERING – MECHANICAL
GEELONG WAURN PONDS CAMPUS

‘At uni I had the opportunity to complete an Industry-Based Learning Program, which involved working in an engineering role over the summer break. This lead to my first engineering position with a premium appliance company.

I now work as a mechanical engineer for a major consulting, design and EPCM (Engineering, Procurement and Construction Management) company. We are engaged to complete anything from feasibility studies to detailed design projects and are even involved in the construction of our designs. I have worked on projects for customers all over the world.

I’m certain that having a degree from Deakin helped me gain employment straight out of uni. The employment market is ever changing, therefore having a degree that makes you flexible and adaptable will put you in good stead.’
As a Deakin engineering student you will have access to recently refurbished, fully-equipped laboratories and cutting-edge computer-aided software that is used in modern industrial workplaces.
Talk to us
For more information, phone 1300 DEGREE (1300 334 733) to speak with a course adviser. You can also contact us via email at enquire@deakin.edu.au.

Website
Deakin on the web, deakin.edu.au, contains detailed information on everything at Deakin, including:
• courses
• fees
• campuses
• facilities and services
• applications and scholarships
• events and activities for VCE, TAFE and non-school leavers
• student profiles.

To search for courses and click through to unit descriptions visit deakin.edu.au/courses or deakin.edu.au/handbook.

School of Engineering website:
deakin.edu.au/sebe/eng.

Other useful websites
Future students
deakin.edu.au/study-at-deakin

Subject information
deakin.edu.au/handbook

Campuses
deakin.edu.au/campuses
deakin.edu.au/tour

Clubs and societies
dusa.org.au/pages/clubs

Scholarships
deakin.edu.au/scholarships

Services and facilities
deakin.edu.au/campus-life/services-and-facilities

VTAC
www.vtac.edu.au

Study Assist
studyassist.gov.au

Social media@Deakin
Connect with Deakin University on Facebook, Twitter and YouTube. Talk with other future students and ask current students and staff about life and study at Deakin.
facebook.com/DeakinUniversity
twitter.com/DiscoverDeakin
youtube.com/DeakinUniversity

Visit us
There are many opportunities throughout the year to visit Deakin, experience a campus tour and talk with representatives face-to-face.
To organise a campus tour and presentation for an individual or group, please phone:
Geelong 03 5227 8525
Melbourne 03 9246 8063
Warrnambool 03 5563 3444
or email future-students@deakin.edu.au.
For our 2013 Open Day dates, see the back cover of this booklet.
For more information on event dates visit deakin.edu.au or phone 1300 DEGREE (1300 334 733).

Victorian Tertiary Admissions Centre (VTAC)
Contact VTAC for information about:
• the application process
• VCE prerequisites
• extra requirements
• middle-band selection
• clearly-in ATARs
• fees
• Special Entry Access Schemes (SEAS).
www.vtac.edu.au

Further reading
Deakin University produces a range of booklets to help you choose the right course. These include:
• 2014 Undergraduate Course Guide
• Accommodation Guide 2014
• Introduction to University Guide
• Pathways to Deakin 2014
• Parents’ magazine
• Off-Campus Course Guide 2014
• University handbook 2013 deakin.edu.au/study-at-deakin/find-a-course/university-handbook (online only)
• Deakin at Your Doorstep (Associate Degree of Arts, Business and Sciences)
• 2014 undergraduate career booklets
• postgraduate course information.
You can download copies of these brochures at deakin.edu.au/course-guides or to request copies of any of the above, email enquire@deakin.edu.au or phone 1300 DEGREE (1300 334 733).

Deakin University also produces course guides specifically for international students. To request a copy phone Deakin International on +61 3 9627 4877 or email deakin-international@deakin.edu.au.
IMPORTANT DATES 2013

DEAKIN EVENTS
Sunday 4 August
Open Day
Warrnambool Campus

Sunday 11 August
Open Day
Geelong Waurn Ponds Campus and
Geelong Waterfront Campus

Sunday 25 August
Open Day
Melbourne Burwood Campus
Deakin will hold additional events for prospective
students and parents. Please visit deakin.edu.au/
study-at-deakin for updates.

APPLICATION DATES
Trimester 1
Early August *
VTAC applications open

Late September *
Timely VTAC applications close

Mid November *
Late VTAC applications close (late fee applies)

Mid December *
Very late VTAC applications close (very late
fee applies)

December
Change of Preference
Please check the Deakin University Change of
Preference website closer to the date for specific
event details, deakin.edu.au/cop.

Trimester 2 and 3
Trimester 2 applications open in April and
Trimester 3 applications open in August.
Course availability and places may be limited.
Please visit deakin.edu.au/apply closer to the
time for more information and specific dates.

CAREER EXPOS
Melbourne
Thursday 2–Sunday 5 May
The Age VCE Careers Expo
Saturday 1–Sunday 2 June
Melbourne – Reinvent Your Career Expo
Friday 16–Sunday 18 August
Herald Sun Careers Expo

Interstate
Saturday 23–Sunday 24 March
Brisbane – Reinvent Your Career Expo
Sunday 12–Monday 13 May
Adelaide – Tertiary Studies and Careers Expo
Thursday 16–Sunday 19 May
Perth – Careers, Education and Employment Expo
Saturday 20–Sunday 21 July
Brisbane – The Tertiary Studies Expo (TSXPO)
Saturday 21–Sunday 22 September
Sydney – Reinvent Your Career Expo

VTAC OFFERS
Late November *
Early round offers

Mid to late January 2014 *
Round 1 offers

Mid to late January 2014 *
Negotiated offers (irregular offers)

Early February 2014 *
Round 2 offers

* Please check the VTAC website www.vtac.edu.au
closer to the time for specific dates.

Box Hill Institute CRICOS Provider Code: 02411J
Chisholm Institute of TAFE CRICOS Provider Code: 00881F
Gordon Institute of TAFE CRICOS Provider Code: 00011G
Melbourne Institute of Business and Technology (MIBT) CRICOS Provider Code: 01591G
South West Institute of TAFE CRICOS Provider Code: 01575G
2013
DEAKIN UNIVERSITY
OPEN DAYS

04.08.13
WARRNAMBOOL
CAMPUSS
Princes Highway
Warrnambool Victoria

11.08.13
GEELONG
WAURN PONDS CAMPUS
75 Pigdons Road
Waurn Ponds Victoria

GEELONG
WATERFRONT CAMPUS
1 Gheringhap Street
Geelong Victoria

25.08.13
MELBOURNE
BURWOOD CAMPUS
221 Burwood Highway
Burwood Victoria