Bachelor of Mechanical Engineering (Honours)

Course summary for local students

Year

2017 course information

Award granted Bachelor of Mechanical Engineering (Honours)
Campus

Offered at Burwood (Melbourne) (first year of course only)*, Waurn Ponds (Geelong)

Cloud CampusYes
Length4 years full-time or part-time equivalent
Next available intake

March (Trimester 1), July (Trimester 2)^

Tuition fee rateAvailable fee rates for 2017 can be found at www.deakin.edu.au/fees
LevelUndergraduate
Faculty contacts

Faculty of Science, Engineering and Built Environment
School of Engineering
Tel 03 9244 6699
sebe@deakin.edu.au

www.deakin.edu.au/engineering

Clearly-in ATAR
Burwood (Melbourne): N/A
Waurn Ponds (Geelong) - off campus: N/A
Waurn Ponds (Geelong): N/A
CRICOS course code079996J
VTAC Codes1400314801 - Waurn Ponds (Geelong), Commonwealth Supported Place (HECS)
1400514801 - Burwood (Melbourne), Commonwealth Supported Place (HECS)
1400614801 - Cloud (online), Commonwealth Supported Place (HECS)
Deakin course code S462

Trimester 2 intake only available at Waurn Ponds (Geelong) and Cloud (Online).

* Only the first year of this Engineering program is available at the Melbourne Burwood Campus.  Students enrolled at the Melbourne Burwood Campus will be required to transfer to the Geelong Waurn Ponds Campus or Cloud (online) mode for the second year of their program.

INTERNATIONAL STUDENTS - Due to visa regulations, this course can only be undertaken at the Geelong Waurn Ponds Campus or Cloud (Online).

Course sub-headings

Course overview

Deakin’s Bachelor of Mechanical Engineering (Honours) prepares you to be an industry-ready professional engineer capable of applying the principles of technology and science to the design, production and operation of systems, devices and machinery. Today, mechanical engineers lend their skills to the development of almost every design imaginable – especially complex products like cars, robots and aeroplanes.

Product development and advanced manufacturing are key drivers for the future of Australian industry. To meet this need, Deakin's mechanical engineering degree brings together leading computer-aided engineering technologies with advanced materials and manufacturing knowledge to provide one of the most relevant mechanical engineering degrees in Australia. Through project-oriented design-based learning (PODBL), students learn fundamental theory and apply it to industry-relevant projects to develop innovative solutions to real-world problems.

As a student you will benefit from Deakin's world-class research teams in automotive engineering and advanced materials, our strong links with industry and our state-of-the-art facilities.

During the course you’ll cover core mechanical disciplines including machine design, thermo-fluids, structural design and industrial control while developing skills in project management, communication, and financial management. You will also gain a solid understanding of product and process modelling, and how to design for sustainability.

You’ll also have opportunities to test your mechanical design and engineering skills in challenges such as the Shell Eco Marathon and Warman international and national competitions. Graduates have a high degree of employability in the automotive, manufacturing and mining sectors, as well as a range of other industries that utilise student’s strong engineering design and product development skills.

Deakin’s Bachelor of Mechanical Engineering (Honours) is accredited by Engineers Australia giving the degree international recognition and allowing graduates to practise as professional engineers in many countries around the world.

With an international skills shortage in the engineering industry, Deakin graduates are in demand. Graduates are highly employable, industry-ready and highly sought-after for their skills in engineering, innovation, leadership, project management and communication, as well as their capacity to astutely anticipate and adapt to the ever-changing nature of the mechanical engineering industry. Career opportunities exist in the automotive, aircraft, ship-building, aerospace, and railroad industries among others.

Units in the course may include assessment hurdle requirements.

Professional recognition

Deakin’s Bachelor of Mechanical Engineering (Honours) is accredited by Engineers Australia, which gives the degree international recognition, allowing graduates to practise as professional engineers in many countries around the world.

Fees and charges

Fees and charges vary depending on your course, your fee category and the year you started. To find out about the fees and charges that apply to you, visit www.deakin.edu.au/fees.

Career opportunities

Graduates can expect to gain employment in the supplier companies, other leading manufacturing and design companies, aircraft, ship-building, aerospace and railroad.

Course Learning Outcomes

Deakin Graduate Learning Outcomes (DGLOs)

Course Learning Outcomes (CLOs)

1. Discipline-specific knowledge and capabilities: appropriate to the level of study related to a discipline or profession.

  • Integrate well-developed knowledge of physical sciences and engineering fundamentals, which underpins the engineering discipline to analyse complex engineering problems and to evaluate possible solutions.
  • Apply professional engineering knowledge, and knowledge of contextual factors in order to design, develop and maintain sustainable engineering infrastructure, systems or products.
  • Plan and execute research projects to show capacity for advanced knowledge and skills in an engineering discipline and thereby demonstrate the ability to continue professional development and / or scholarship.

2. Communication: using oral, written and interpersonal communication to inform, motivate and effect change.

  • Apply effective communication skills in a professional context to interpret, evaluate and present technical engineering information using oral, written, visual modes.
  • Demonstrate proficiency in comprehending viewpoints of others and present arguments and justifications for representing engineering position to technical and non-technical audience.

3. Digital literacy: using technologies to find, use and disseminate information.

 

  • Identify, select and use digital technologies and tools relevant to the engineering discipline to generate, manage and share information.
  • Demonstrate the ability to independently and systematically locate information, evaluate its reliability, and use the information for engineering design, problem solving and research purposes.

4. Critical thinking: evaluating information using critical and analytical thinking and judgment.

  • Demonstrate autonomy and judgement through balanced application of logic, intellectual and research criteria to review, analyse, and synthesise information for engineering problem solving.

5. Problem solving: creating solutions to authentic (real world and ill-defined) problems.

  • Apply engineering knowledge, skills and techniques to identify and define complex problems in a variety of contexts.
  • Evaluate and use established engineering methods to identify potential solutions to independently and collaboratively resolve complex engineering problems and realise solutions.
  • Demonstrate innovative and creative approaches and/or solutions in planning, designing or executing engineering projects.

 

6. Self-management: working and learning independently, and taking responsibility for personal actions.

  • Evaluate own knowledge and skills using frameworks of reflection and take responsibility for learning and performance.
  • Work responsibly and safely in engineering environments to demonstrate professionalism.

7. Teamwork: working and learning with others from different disciplines and backgrounds.

  • Undertake various team roles, work effectively within a team, and utilise effective teamwork skills in order to achieve learning goals.
  • Apply interpersonal skills to interact and collaborate to enhance outcomes through shared individual and collective knowledge and creative capacity to optimise complex problem resolution.

8. Global citizenship: engaging ethically and productively in the professional context and with diverse communities and cultures in a global context.

  • Formulate sustainable engineering practices by integrating aspects of design, development or research through concern for economic, environmental, social and cultural perspectives and values.
  • Engage with global traditions and current trends in engineering practice in order to appreciate diversity, seek equity in outcomes and adopt ethical and professional standards.

 

Approved by Faculty Board 14 July 2016

Course rules

To complete the Bachelor of Mechanical Engineering (Honours), students must attain 32 credit points. Units (think of units as ‘subjects’) are equal to 1 or 2 credit points, sometimes abbreviated as cps. Most students choose to study units amounting to 4 credit points (or cps) per trimester, and usually undertake two trimesters each year.

The 32 credit points include 30 core units (these are compulsory) and 2 Engineering elective units (you can choose which ones to study).

Course structure

Core

Level 1 - Trimester 1

SEJ101Design Fundamentals (2 credit points)

SEB101Engineering Fundamentals

SIT199Applied Algebra and Statistics

SEJ010Introduction to Safety and Project Oriented Learning (0 credit points)

Level 1 - Trimester 2

SEJ103Materials Engineering Project (2 credit points)

SIT172Programming for Engineers

SIT194Introduction to Mathematical Modelling


Level 2 - Trimester 1

SEM200Machine Design (2 credit points)

SEM218Fluid Mechanics

SEP291Engineering Modelling

Level 2 - Trimester 2

STP010Introduction to Work Placements (0 credit points)

SEJ201Structural Design (2 credit points)^

SEM216Stress and Failure Analysis

SEM202Thermodynamics


Level 3 - Trimester 1

SEM300Thermo-Fluid System Design (2 credit points)

SED304Product Development

SEM313Manufacturing

Level 3 - Trimester 2

SEM301Industrial Control (2 credit points)

SEM302Advanced Stress Analysis

SEM327Dynamics of Machines

SEP490Engineering Work Experience (0 credit points)

* SEP490 is available in trimester 1, 2 and 3


Level 4 - Trimester 1

SEJ441Engineering Project A (2 credit points)~

SEM400Computational Fluid Dynamics

Engineering elective

Level 4 - Trimester 2

SEJ446Engineering Project B (2 credit points)~

SEM406Advanced Modelling and Simulation

Engineering elective

~Note: Students are expected to undertake SEJ441 and SEJ446 in consecutive trimesters.  Students will be required to seek approval from the unit chair if they are unable to complete SEJ441 and SEJ446 consecutively.  

^ Must have successfully completed STP010 Introduction to Work Placements (0 credit point unit)

Electives

Engineering elective units:

SEM401Materials Performance and Durability

SEM402Advanced Manufacturing


Articulation and credit transfer

Flexible entry into the course allows students to upgrade their qualifications and to obtain credit for previous studies/experience. Applicants with appropriate TAFE qualifications or other approved post-secondary studies may apply for credit for prior learning. Credit may be considered for skills obtained in the workforce or by informal means.

Attendance requirements

In order to satisfy course accreditation requirements, as specified and administered by Engineers Australia, all Cloud (online) enrolled students are required to participate in Campus learning activities equivalent to a minimum duration of one full academic week for every trimester of effective full time study in order to ensure that graduates possess and have demonstrated the minimum necessary knowledge and skill base, engineering application abilities, and professional skills, values and attitudes at successful completion of the course to be sufficiently prepared to enter professional engineering practice.

Cloud (online) enrolled students are required to attend campus mode conducted activities during the corresponding Intensive Week in a trimester. Attendance at campus mode activities is linked to assessment requirements within the Engineering programmes, failure to attend will result in not meeting the hurdle requirement of the respective assessment. Thus, a fail grade shall be awarded for the respective affected unit(s) for that particular trimester.

Note: Students’ enrolled in the off campus or Cloud (online) mode will be required to attend campus based activities at scheduled sessions during the trimester intensive week. Cloud (online) international students will be required to obtain a visitor visa to undertake these campus based activities. International students are unable to apply for a student visa for this course.

Equipment requirements

Students must have access to a suitable computer and a network connection.  Information about the hardware and software requirements may be obtained from the School of Engineering, telephone 03 9244 6699.

Work experience

Before students will be deemed eligible to graduate they must obtain an aggregate of at least 12 weeks of suitable practical experience during their program. Work experience would normally be gained during the vacation periods. Further details are contained in the unit description for SEP490 Engineering Work Experience.

Entry requirements - general

Deakin University offers admission to undergraduate courses through a number of admission categories.

In all categories of admission, selection is based primarily on academic merit as indicated by an applicant's previous academic record.

For more information on the Admission Criteria and Selection Policy visit The Guide.

Entry requirements - specific

Applicants should have successfully completed VCE or equivalent. Refer to the VTAC Guide for the latest pre-requisite information www.vtac.edu.au

Those aged 21 or over on 1 January and who do not hold VCE or equivalent should apply under Alternative Admission. This category is open to those who do not satisfy normal entrance requirements, but can demonstrate relevant work or life experience.

Credit for prior learning - specific

The University aims to provide students with as much credit as possible for approved prior study or informal learning which exceeds the normal entrance requirements for the course and is within the constraints of the course regulations. Students are required to complete a minimum of 50% of the course at Deakin University.

You can also refer to the Credit for Prior Learning System which outlines the credit that may be granted towards a Deakin University degree.

How to apply

Check our Trimester 3 site to see if this course is having a Trimester 3 intake.

Applications for Trimester 3 are made directly to the University through the Applicant Portal.

For information on the application process and closing dates, see the Apply web page. Please note that closing dates may vary for individual courses.

Workload

You can expect to participate in a range of teaching activities each week. This could include classes, seminars, practicals and online interaction. You can refer to the individual unit details in the course structure for more information. You will also need to study and complete assessment tasks in your own time.

Work experience

You’ll gain industry experience by completing at least 60 days of practical work experience in an engineering workplace, developing and enhancing your understanding of the engineering profession, possible career outcomes, and the opportunity to establish valuable professional networks.