Deakin Research

Institute for Frontier Materials

print
 

MRI provides key to unlock plastic crystal potential

Researchers at IFM have uncovered the reasons behind the variable conductivity of organic ionic plastic crystals.

Ion man receives Alfred Deakin Medal

Materials engineering researcher Anthony Somers has been awarded an Alfred Deakin Medal.

Electrolyte scientists dare to dream

The world's leading electrolyte scientists have converged in Geelong for ISPE-14.

Softening the impact

Cracking the cartilage riddle, Deakin scientists synthetically mimic the body's most complex lubrication system.

Energy Generation - Thermocells

The utilization of waste heat produced in industrial processes or geothermal activity is an attractive approach for relieving some of our present reliance on fossil fuels. Devices that allow the direct conversion of thermal energy to electrical energy, with a flexible design and no carbon emissions, have the potential for widespread use.

Our work with ionic liquid-based thermoelectrochemical devices offers the possibility of cheap and flexible device design suitable for harvesting waste heat in the 100-200°C range. The use of ionic liquid electrolytes, which can have negligible volatility and good thermal and electrochemical stability, will eliminate any problem of evaporation from the device with long-term use. It also increases the temperatures that can be harvested compared to traditional aqueous-based devices.

Our group has made remarkable progress in this area and has recently demonstrated the highest reported Seebeck coefficients and power outputs to-date for ionic liquid-based thermoelectrochemical cells by using a high entropy change cobalt redox couple.

Deakin University acknowledges the traditional land owners of present campus sites.

23rd January 2014