Deakin Research

Institute for Frontier Materials

Novel solar cells capture audience's imagination

IFM's Gayathri Devi Rajmohan has won the People's Prize in Deakin's Three Minute Thesis competition for 2013.

New world of plasma research

Meet the team at Deakin making it happen.

Textile industry applications

The research in textile industry applications includes:

  • anti-pilling of wool knitwear.
  • electronic textiles.
  • wastewater treatment
  • carbon fibre sizing.

Our new approaches to address the different challenges in these areas include:

  • Development of a novel 3-step plasma treatment, activation first, then functionalization, followed by pulsed plasma polymerization. A substantial improvement in pilling performance has been achieved using this method.
  • A systematic study has been conducted to understand how and why the conductivity and durability of a conducting polymer coated on textiles can be improved.
  • Development of nanosecond pulsed atmospheric pressure plasma technology to integrate pulsed electric field, UV radiation, O₃, and free radicals in one go for wastewater purification and surface treatment. It has shown very promising results for textile wastewater treatment both in the bleaching of dye liquors and reducing total organic carbon content.

Coating and functionalization of carbon fibres using a three-step plasma treatment

    An image showing the three steps of plasma treatment
  • Z. Chen, X. J. Dai, P.R. Lamb, J. du Plessis, D. R. de Celis Leal, K. Magniez, B. L. Fox, X. Wang, Plasma Processes and Polymers. 2013, 10: 1100-1109.

A three-step plasma treatment-activation, functionalization and polymerization-has been used to deposit a thin plasma polymer with amine groups on carbon fibres (CFs). This plasma polymer has strong adhesion to the CF surface and the amine groups enable strong bonding to a matrix. The CFs were first treated by Ar plasma to activate and clean the surface, followed by O₂ plasma to incorporate oxygen-containing functional groups, and finally a heptylamine thin film was deposited using combined continuous wave and pulsed plasma polymerization. Strong adhesion between the plasma polymer and the CF was observed. The fibre strength was not affected by the treatment.


Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion

  • T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, J. du Plessis, Materials Chemistry and Physics, 2014, 143: 668-675.

In this work, we have systematically studied the improvement of binding of polypyrrole with polyethylene terephthalate (PET) thin films and fabrics using low pressure oxygen plasma. A range of plasma treatment times were employed to investigate plasma induced effects on surface roughness, surface chemistry and hydrophilicity. Modifications of PET films were studied with respect to surface morphology by means of atomic force and scanning electron microscopy. Chemical effects of plasma treatment were studied using X-ray photoelectron spectroscopy. Results showed that both the increase in surface functionalisation by carboxylic groups and formation of nano size roughness contributed to improved adhesion and conductivity.

SEM images of cross sections of PPy coated PET fibres from coated fabric samples without plasma pre-treatment and after plasma pre-treatment: (a) control sample, and (b) 500 s plasma treated PPy coated PET fibre cross sections.

SEM images of cross sections of PPy coated PET fibres from coated fabric samples without plasma pre-treatment and after plasma pre-treatment: (a) control sample, and (b) 500 s plasma treated PPy coated PET fibre cross sections.


Improved anti-pilling of wool knits using a novel three step plasma treatment: activation, functionalization and pulsed polymerization of hexamethyldisiloxane

  • A. Wan, X. J. Dai, K. Magniez, J. du Plessis, W.Yu, X. Wang, Textile Research Journal. 2013, 83 (19): 2051.

An image of untreated control fabric (marked pilling) and the Optimum treatment (very little pilling)

Untreated control fabric (marked pilling) Optimum treatment (very little pilling).

A novel three step plasma treatment, including surface activation with argon, surface functionalization with oxygen and then thin film deposition using a pulsed plasma polymerization of hexamethyldisiloxane (HMDSO), was used in low-pressure plasma to improve the pilling resistance of knitted wool fabric. The pilling propensity of the treated samples was investigated, compared with untreated, argon activated and oxygen functionalized samples, and argon and oxygen plasma treatment followed by continuous wave plasma polymerization of HMDSO. With the novel three step treatment, a pilling grade of 4 for wool fabric treated was achieved, while that of untreated was 2 and that of other plasma treatments was 3. A uniform HMDSO polymer coating was obtained with a 300 nm thin film seen by scanning electronic microscopy (SEM). X-ray photoelectron spectroscopy (XPS) showed the presence of silicone and FTIR confirmed the chemical structure of the coating. No apparent differences were found in the whiteness index between the treated and untreated wool knits, although there was some reduction in the bursting strength of plasma-treated wool knits.


Study of radio frequency plasma treatment of PVDF film using Ar, O₂ and (Ar + O₂) gases for improved polypyrrole adhesion

  • A. Kaynak, T. Mehmood, X. J. Dai , K. Magniez, A. Kouzani, Materials, 2013, 6: 3482.

Improvement of the binding of polypyrrole with PVDF (polyvinylidene fluoride) thin film using low pressure plasma was studied. The effects of various plasma gases i.e., Ar, O₂ and Ar + O₂ gases on surface roughness, surface chemistry and hydrophilicity were noted. The topographical change of the PVDF film was observed by means of scanning electron microscopy and chemical changes by X-ray photoelectron spectroscopy, with adhesion of polypyrrole (PPy) by abrasion tests and sheet resistance measurements. Results showed that the increase in roughness and surface functionalization by oxygen functional groups contributed to improved adhesion and Ar + O₂ plasma gave better adhesion.


Wastewater treatment

We have used the nanosecond pulsed atmospheric pressure plasma (NPAPP) system for wastewater treatment. This system combines a pulsed electric field, UV radiation, O₃, and free radicals. It has shown very promising results for textile wastewater treatment both in the bleaching of dye liquors and reducing total organic carbon content.


Improved bonding and conductivity of polypyrrole on polyester by gaseous plasma treatment

  • T. Mehmood, X.J. Dai, A. Kaynak, A. Z. Kouzani, Plasma Processes and Polymers. 2012, 9(10): 1006.

An image showing The COOH groups and uniform nano-scale surface roughness produced by O2 plasma improved coating adhesion and increased conductivity.

The COOH groups and uniform nano-scale surface roughness produced by O₂ plasma improved coating adhesion and increased conductivity.

A systematic study was conducted using argon, oxygen and nitrogen plasma to improve the adhesion of polypyrrole coating to polyester fabric for improving conductivity and to understand the mechanisms involved. Polyester thin film was used as a reference sample. The changes in wettability, surface chemistry and morphology were studied by water contact angle, x-ray photoelectron spectroscopy and atomic force and scanning electron microscopy. It was found that both the highest conductivity and the strongest interfacial bonding were achieved by oxygen plasma treatment. The increase in hydrophilicity, surface functionalization and suitable nano-scale roughness gave improved adhesion.

Deakin University acknowledges the traditional land owners of present campus sites.

30th January 2014