Deakin Research

Deakin Research

print
 
Contact us
Email:

pradasrc@deakin.edu.au

Phone:

+61 3 5227 2150

Mail:

Centre for Pattern Recognition and Data Analytics
School of Information Technology
Deakin University
Locked Bag 20000
GEELONG VIC 3220

Publication Details

Copyright and Disclaimer Notice


En Peng, Patrick Peursum, Ling Li, and Svetha Venkatesh. A smartphone-based obstacle sensor for the visually impaired. In International Conference on Ubiquitous Intelligence and Computing (UIC), pages 590-604, 2010.

In this paper, we present a real-time obstacle detection system for the mobility improvement for the visually impaired using a handheld Smartphone. Though there are many existing assistants for the visually impaired, there is not a single one that is low cost, ultra-portable, non-intrusive and able to detect the low-height objects on the floor. This paper proposes a system to detect any objects attached to the floor regardless of their height. Unlike some existing systems where only histogram or edge information is used, the proposed system combines both cues and overcomes some limitations of existing systems. The obstacles on the floor in front of the user can be reliably detected in real time using the proposed system implemented on a Smartphone. The proposed system has been tested in different types of floor conditions and a field trial on five blind participants has been conducted. The experimental results demonstrate its reliability in comparison to existing systems.

bib .pdf ]

Deakin University acknowledges the traditional land owners of present campus sites.

30th April 2012