Faculty news archive

12/2013 CADET vision taking shape with arrival of new equipment

12/2013 Secrets of Lady Bay fishers revealed in Deakin study

11/2013 TOBY Playpad engaged

11/2013 Ramping up success

10/2013 Animal personalities more like humans than first thought

10/2013 Plankton species heading for extinction

09/2013 Funding helps researchers make the most of marine extract

09/2013 Giving expert thought to cyber security

08/2013 Forensic students confronted with gruesome reality of working crime scenes

08/2013 Deakin graduate to improve access to sanitation in Timor-Leste

07/2013 Presidential role for LES researcher

07/2013 One in eight Australian IPs are exposed to web threats every day, reveals study

07/2013 Research on solid footing

06/2013 Push for the winning edge in competition

06/2013 Fellowship helps maggot research fly

06/2013 Community approach to measuring traffic noise

06/2013 Challenging students to discover science and engineering

05/2013 Nanoparticle research planting seeds for success

05/2013 Project to catalogue web security threats

05/2013 New group aims to LEAD the way for female engineering students

05/2013 LES researchers finding out what's Pozible

03/2013 New engineering labs spark new opportunities

03/2013 Peptides helping researchers in search for Parkinson's disease treatment

03/2013 Ending the wildlife Catastrophe

03/2013 Deakin researchers on the road with Catalyst

Faculty news homepage


CADET vision taking shape with arrival of new equipment

 Deakin University’s forthcoming Centre for Advanced Design in Engineering Training (CADET) will provide some of the best design-focused engineering facilities in the Australian university sector.

Located at the University’s Geelong Waurn Ponds Campus, CADET will offer programs for young people right from Year 8 through to PhD level. With CADET’s doors expected to open to students in 2015, Deakin’s School of Engineering has started taking delivery of some of the advanced equipment that will help make the CADET vision a reality.

These include an Alicona G4 Infinite Focus 3D optical surface profilometer, which measures the profile of a surface without making contact and provides extremely accurate 3D images of surfaces at a microscopic level; an SLM 125 HL Laser Selective Laser Melting 3D metal printer, which uses laser to melt metal powder to build up a 3D shape from a CAD type file; and a Project 660 Pro full colour 3D plaster printer, which uses plaster to build up models and is a perfect tool to demonstrate the potential of rapid prototyping to students.

Professor Guy Littlefair, Head of Engineering in Deakin’s Faculty of Science, Engineering and Built Environment, says a unique aspect of CADET is the accessibility undergraduate students will have to this high-end equipment.

‘Although similar types of technologies and equipment may be able to be found within some industries and universities, CADET will be unique in making this very high end equipment accessible to undergraduate students and not simply researchers and academics,’ Professor Littlefair explains.

CADET is a partnership between Deakin University and the Australian Government.


Secrets of Lady Bay fishers revealed in Deakin study

 Warrnambool’s Lady Bay attracts mostly local recreational fishers who have a good efficiency rate in catching snapper, a Deakin University study has found.

The study by School of Life and Environmental Sciences honours student Lauren Dickson into the recreational fishing catch and effort in Lady Bay found most anglers are males aged 40-54 years and they travelled an average 44km to fish. They are also successful with 86 per cent catching fish in trips lasting an average 5.5 hours. 'This clearly illustrates the catching efficiencies and high specialisation of Lady Bay’s anglers,' Ms Dickson said.

A total of 30 species of fish were caught across 1434 individual catches during the survey period. Snapper was the primary catch with 43 per cent of the total.

Ms Dickson, who completed her undergraduate degree in environmental science majoring in marine biology at Warrnambool, said recreational fisheries are becomingly increasingly important worldwide; however the lack of information regarding their impact is preventing adequate management.

Her study aimed to test different sampling methods to inform recreational fisheries managers on the best way to estimate catch and effort. However, Ms Dickson said there was no feasible way to capture overall fishing catch and effort because there were too many confounding variables.

The study found the fishery is highly localised and specialised and largely attracts snapper catches.

Ms Dickson said 91 per cent of the anglers were male, much higher than general fishing population statistics for Victoria which show about 67 per cent are males.

The study found that 36 per cent of anglers were members of fishing clubs, with 21 per cent belonging to the local angling club.

'Better understanding of recreational snapper fishing in the south west of Victoria will be important to fisheries managers managing this fishery resource. It is essential that recreational catch is factored into overall management strategies,' Ms Dickson said.

'Given the high level of fishing effort, specialisation and high experience level of anglers, the total annual catch of many species, particularly snapper, may be substantial for Lady Bay and needs to be adequately represented in stock assessment and managerial decisions in the future.'

One hundred and forty four groups of people were interviewed for the study earlier this year. It was the first catch and effort study undertaken in Lady Bay.

Ms Dickson’s study was supervised by Associate Professor Laurie Laurenson and Dr Anne Wallis.


Funding helps researchers make the most of marine extracts

 A project involving Deakin University’s Centre for Chemistry and Biotechnology (CCB) has been awarded NZ$10.8 million in funding in the New Zealand Government’s 2013 Science Investment Round.

‘Export Marine Products’ is a new six-year project aimed at capitalising on the high-value marine extracts market.

Professor Colin Barrow, from Deakin’s School of Life and Environmental Sciences and CCB Director, is heading Deakin’s involvement in the project, working with scientists from New Zealand’s Plant & Food Research organisation as well as industry partners. The project will be based in Nelson in New Zealand.

‘This project is pretty exciting,’ Professor Barrow says. ‘The funding is for NZ$10.8 million over six years so not only is this a large amount of money, but it has a long-term focus, working for a long period of time with industry partners who are committed to the project.’

The program is described as taking a ‘whole fish, whole value chain approach’, examining how to extract maximum value from marine products at multiple points in the value chain, converting traditionally low value by-product streams into high value marine molecules, as well as developing new unique marine extracts with proven applications, such as nutraceuticals, functional food ingredients and biomaterials.

Dr Sue Marshall, Plant & Food Research Science Group leader, explains further.

‘Aside from food uses, marine organisms contain many useful compounds including bioactives for body, skin and hair health and large polymers for biomaterials. These are often found in low value by-product streams too, so the potential to add value to the industry is huge,’ Dr Marshall says.

Although the project has a New Zealand focus, Professor Barrow says that researchers will also be working on Australian materials and project outcomes will also have applications for Australia.

‘A lot of it is around ‘green’ chemistry: taking waste products and trying to utilise all of the materials,’ Professor Barrow explains.

‘The diversity of marine life is another aspect. The marine environment has more than half the biodiversity on earth, so we will be looking at marine organisms and enzymes and what we can do with those that might be useful.’

Professor Barrow says the project is part of an ongoing collaboration he has had with Plant & Food Research for a number of years.

‘This project particularly aligns with my research interests in peptide and protein fibres, marine lipases for omega-3 processing and marine derived functional food ingredients,’ Professor Barrow says.

‘The project is an extension of a collaboration that formally started with a jointly funded PhD student, Tim Nalder, who is nearing completion of his Deakin PhD, after spending the first year of his research at Plant & Food New Zealand in Nelson and the remaining two years at Deakin’s Geelong Waurn Ponds Campus.’

Read more about the project in the Plant & Food Research media release: http://www.plantandfood.co.nz/page/news/media-release/story/marine-extracts-earns-nod-from-government/


Giving expert thought to cyber security

 As his visit to Deakin University as part of the ‘Thinkers in Residence’ program came to a close, the words Professor Yuliang Zheng used to describe the program were simple: ‘a great idea, excellent’.

Professor Zheng, from the Department of Software and Information Systems at the University of North Carolina at Charlotte, North Carolina, USA, is known as the father of signcryption technology which is now an international standard for data security. His pioneering research into immunising public key encryption against adaptive attacks has been embodied in numerous international standards for public key cryptography, including those from ISO, IEEE and IETF.

Professor Lynn Batten, coordinator of the Securing Cyberspace Research Laboratory in Deakin’s School of Information Technology, is a collaborator of Professor Zheng and the lab was instrumental in organising his visit (from late June to mid-August).

While Professor Zheng was at Deakin, he and Professor Batten planned a joint journal paper on tensions over data access between governments and business, to be developed over the next year or so. They also agreed to collaborate on an ARC Discovery grant application for the next round.

Professor Zheng was also instrumental in offering advice and guidance on final revisions to a journal paper on electronic cash by Professor Batten and Professor Xun Yi (Victoria University, Melbourne). He also assisted several PhD students with advice on their projects and is now an associate supervisor of a Deakin PhD student.

During his visit, Professor Zheng gave two public lectures - the first sharing his personal experience in commercialising and standardising scholarly research and the second discussing public key cryptography for cloud computing - and presented three research seminars.

‘That was quite exciting for me as well because the format of the seminars was half my presentation and the other half basically discussion,’ Professor Zheng explains.

‘I wanted to motivate the students to participate in the discussion. So overall, I think it was great... there was a lot of discussion. The seminars were just one hour - not enough!’ he laughs.

As a leader in his field, Professor Zheng was asked if he had any thoughts for students considering a career in this area.

‘I think cyber security definitely is one of the very good areas to be in for future jobs, because the security issues are getting bigger and bigger over time and, from small business all the way to large, as well as government agencies, they are all looking for experts, professionals who can actually help protect information assets. So I think it definitely is an area for students to look into considering future job opportunities and, not to mention, you know it actually pays pretty good!’

Read more about Deakin’s ‘Thinkers in Residence’ program.


Forensic students confronted with gruesome reality of working crime scenes

In a corner of Deakin University's Geelong Waurn Ponds Campus an inconspicuous building is set to be the site of some grisly scenes. It has been converted into a purpose-built facility to provide Deakin's forensic science students with a real-life experience of working a crime scene.

Officially opened on 7 August, The Roger Lewis and Michael Liddy Forensic Crime Scene Training Centre includes a kitchen, lounge room and bedroom (with a bathroom to be fitted shortly), all ready to be staged with the gruesome elements forensic investigators are confronted with, from body fluids and blood to finger prints and fibres and weapons.

'With this new facility we will add a dose of reality to the skills our students have developed through the forensic science program,' said Dr Xavier Conlan, a senior lecturer in forensic science at Deakin.

'We have the flexibility to stage a wide range of crime scenes such as a clandestine drug lab or fatal stabbing. Working the scenarios will provide a holistic experience of what is involved in working a crime scene from the correct way to identify, collect and store evidence, to in the lab analysis and presenting the evidence in court.'

Guests at the opening were welcomed by a homicide scene that involved a clandestine drug laboratory. The scene had been processed by the 'investigators' and gave the visitors a real feel for the atmosphere in a gruesome forensic crime scene.

'Our program is well respected within the forensic science community and our undergraduate students have opportunities to mix with real world forensic practitioners,' said Dr Michelle Harvey, course director of Deakin's Bachelor of Forensic Science.

'We train the ultimate problem solvers. They leave us with outstanding analytical skills making them extremely sought after by employers.'

Read the full media release and watch a video interview by The Age on the Deakin Newsroom website: deakin.edu.au/news/2013/070813crimescenetraining.php

Find out more about studying Forensic Science at Deakin.


Deakin graduate to improve access to sanitation in Timor-Leste

Rob Leeson, Deakin University engineering graduate and Coordinator of Engineering Development at the City of Ballarat, is embarking on a 12-month volunteer placement with Engineers Without Borders Australia (EWB) in Timor-Leste, applying his engineering skills to improve the access to clean water and sanitation for rural communities in Dili.

Rob started his engineering studies at Deakin in 1994, graduating with honours in 1997. He also worked as a volunteer while he was at Deakin, volunteering for 'a number of conservation jobs with the Australian Trust for Conservation Volunteers (Conservation Volunteers Australia)'.

EWB says Rob will be working as a Rural Water Supply Technical Advisor to provide mentoring and training to government District Water Supply Officers and Technicians, which will allow staff to effectively plan for and manage the construction of sustainable and well maintained rural water systems in Timor-Leste. He will be working in partnership with BESIK (Rural Water Supply and Sanitation Program) and the Government of Timor-Leste.

BESIK is an Australian Government funded program working to improve the lives of rural communities in Timor-Leste. This organisation works closely with the Government of Timor-Leste to improve health and quality of life of rural East Timorese through sustainable and equitable water, sanitation and hygiene (WASH) actions which encourage community ownership.

'I have long had a dream to undertake a volunteer role as part of my engineering, and EWB's WASH program in Timor-Leste allows me to fulfil this dream,' Rob says.

'I am looking forward to collaborating with the local communities to develop WASH systems and mentoring BESIK staff on the operation and maintenance of these systems. It is both powerful and humbling to be given the opportunity to apply my professional skills in Timor-Leste.'

EWB is a not-for-profit organisation with 10 years' experience creating systemic change through humanitarian engineering. To learn more about EWB's work visit www.ewb.org.au


Presidential role for LES researcher

Dr Matthew Symonds, an evolutionary biologist and lecturer in Deakin's School of Life and Environmental Sciences, has been appointed President of the Australasian Evolution Society.

The Australasian Evolution Society is a professional society for researchers and students in the field of evolutionary biology in Australia, New Zealand, and the South Pacific. It has more than 100 members, including geneticists, ecologists, botanists and zoologists.

'It's very exciting to be serving as president of the society for 2013 and 2014,' Dr Symonds says.

'The Australasian region has particular strength and talent in the field of evolution, and members of our society are at the forefront of evolutionary research worldwide. So, it's an honour to be able to act in a capacity that seeks to unite this community.

'I see my role as president as being a facilitator in trying to strengthen ties and communication not only among Australasian evolutionary researchers, but also to the wider public with an interest in science.

'One simple way of doing this is to champion and publicise the fascinating and diverse kinds of evolutionary research going on in the region, and make people more aware of the talented and dynamic individuals who are carrying out this research.'

Another aspect of Dr Symonds' role as president is organising the biannual conference for the society, which this year is in Geelong at the end of September.

'We've got a really exciting line-up of talks shaping up, covering everything from the evolution of leadership in humans to the way cuckoos are able to dupe their hosts.'

Dr Symonds describes his research as covering a broad range of questions and systems, 'but primarily seeks to understand why there is diversity among even quite closely related species'.

'I have a broad range of evolutionary questions and ideas that I am interested in. Being associated with the Australasian Evolution Society therefore really helps to stimulate the creation of those ideas because you are hearing all about this amazing research being conducted by your colleagues in the same field. I also teach evolution to undergraduates at Deakin, so it's a great opportunity to encounter new studies that I can use to illustrate evolutionary processes in my classes.'

Deakin is hosting the 8th biannual meeting of the Australasian Evolution Society at the Geelong Conference Centre from 30 September to 2 October 2013. For more information visit the Society's website: http://australasianevolutionsociety.com/ .


One in eight Australian IPs are exposed to web threats every day, reveals study

One in approximately eight Australian IPs are exposed to one or more web threats on any typical day, researchers from Deakin University and Trend Micro have revealed. In a report released by the Australian Research Council (ARC) Linkage Project, the researchers analysed malicious activity from over 200,000,000 web requests per day from Australia, with around 400,000 of these issued to malicious web pages.

The report, Analysis of the Australian Web Threat Landscape, analyses and discusses threats on the Australian web landscape and provides statistics on what is happening to the average Australian user of the world wide web.

'The ARC Linkage project allows us to apply large scale analytics techniques to analyse massive volumes of Trend Micro malware sensor data,' said Professor Yang Xiang, from Deakin's School of Information Technology. 'Though Australia is geographically isolated in the Southern Hemisphere, it is attracting a significant volume of web threats.'

Within the sample processed for this report, approximately one in every 2,500 web hits originating from Australia is malicious in nature, resulting in Australian users being victim to three per cent of the world web threat attacks.

The report showed that peak periods of website traffic occurred on weekdays during work hours but the curve of malicious traffic reversely vibrates along with the volume changes of web hits.

Just above half (57 per cent) of malicious traffic was triggered by business product users whilst consumer product users accounted for over a third (41 per cent).

Read the full media release on the Trend Micro website.


Research on solid footing

Improving our understanding of the ground beneath us, specifically soil moisture, is the aim of a project by researchers in Deakin University's School of Architecture and Built Environment.

'The design and costs of constructing or repairing residential footings is influenced by the degree of ground movement, which is driven by changes in soil moisture,' researcher Dr Linda Osman-Schlegel explains.

Expansive soils experience significant change in volume from dry to wet periods, and building foundations in such conditions is an engineering challenge. Climate change affects ground movement and it is causing increasing damages in residential foundations. Repairing the damage is costing several hundred billion dollars worldwide.

The Thornthwaite Moisture Index (TMI) is used in many countries to guide standards for footing and slabs construction. TMI is a method for climate classification based on a water balance resulting in the effective moisture available in the environment. Positive values for TMI indicate that precipitation exceeds evaporation, and that there is a potential surplus of moisture in the area. On the other hand, negative values of TMI indicate deficit of water caused by evaporation above precipitation.

'In Australia TMI maps for building codes are generally incomplete, inaccurate or out-of-date,' Dr Osman-Schlegel says.

Enter TMImap - a research project developed by Dr Osman-Schlegel and Dr Simone Leao, her colleague in the School of Architecture and Built Environment, in partnership with HEDRA (Housing Engineering Design & Research Association). The project aims to produce accurate TMI maps for the state of Victoria for the last 100 years (1913 to 2012) using long-term historical climatic data and advanced spatial statistics methods in Geographic Information System (GIS).

'By analysing the spatial and temporal changes of TMI in Victoria, the main areas at risk for residential damages will be identified and present processes and future trends of population growth and urban expansion in vulnerable areas will be analysed,' Dr Simone Leao says.

'Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.'

Push for the winning edge in competition

Final year Mechatronics Engineering students recently put their skills to the test designing and developing autonomous robots to compete in a Sumorobot Competition at Deakin University's Geelong Waurn Ponds Campus.

The competition forms part of the students' assessment. Dr Ben Horan and Dr Matthew Joordens from Deakin's School of Engineering have been running the class for the last five years.

'The competition is part of a final year Mechatronic Engineering subject which employs a design based approach to engineering education. The competition is seen by many students as the pinnacle of their degrees, and provides them with a project they can show prospective employers as a demonstration of their engineering ability,' Dr Horan explains.

'The robots need to be designed according to specific design criteria and it is up to students to use their creativity and imagination to design their robot to outwit, outmanoeuvre, and overpower other students' robots,' Dr Horan says.

'This year's robots needed to weigh less than one kilogram which is of course an important consideration for a Sumorobot which is designed to push other robots out of the competition ring.

'We are continually surprised by the imagination, creativity, and out-of-the-box thinking of our students. Just when you think you have seen all possibilities, a student will completely surprise you.'

This year's winner was Benjamin Champion.

'The secret to his robot's success was to keep his design simple, mechanically robust and to use powerful motors and a lot of wheel traction,' Dr Horan says.

'Within the School of Engineering we have long valued design-based approaches to teaching Engineering, and often hear from students how effective it can be to complement theoretical concepts and really enforce students' understanding.'

See the robots in action on Deakin's YouTube channel:  http://www.youtube.com/watch?v=dnP8bsA-nyY&feature=youtube_gdata


Fellowship helps maggot research fly

Dr Michelle Harvey, a forensic entomologist in Deakin University's School of Life and Environmental Sciences, will be travelling to the USA to further research the relationship between blowflies, maggots and bacteria after recently being named as a recipient of a 2013 Churchill Fellowship.

These prestigious Fellowships are awarded annually in Australia by the Winston Churchill Memorial Trust. The Fellowships each have an average value of $20,000 and are described as giving recipients 'the opportunity to travel overseas to further their passion and return to Australia to implement their findings and share them with others'.

For Dr Harvey, this means the opportunity to travel to two research facilities in the USA - including the University of Tennessee's Anthropology Research Facility where she has done research previously - to seek to better understand bacteria associated with the blowfly, Lucilia sericata.

'These are the same blowflies that are found on decomposing corpses, as we also find in flystrike on sheep and we also use in maggot debridement therapy to clean up wounds,' Dr Harvey explains.

'What we're interested in is how maggots actually deal with bacteria, because they obviously live in these really disgusting environments and we want to know how they manage to do that.

'We know that [maggots] have chemical potential - they produce these excretions and secretions that kill off bacteria and help to clean up the wounds.

'What we really don't understand is what does a fly bring with it when it comes into a wound, because we know they're carrying certain types of bacteria and it seems these bacteria might actually be quite important in creating certain compounds and things that can work against other bacteria. As an example, could they potentially be critical in the fight against emerging antibiotic resistant superbugs.'

The intention underpinning the Churchill Fellowships of recipients using the knowledge they gain to benefit the wider Australian community is something Dr Harvey strongly believes in.

'That's really important to me, because everything that I do is aimed towards having some kind of social impact, that's why I went into forensics because I felt like I could make a difference.

'What you really want to see as a researcher is that the work you are doing has as much impact as possible, measurable impact... I don't want to be collecting data that could help someone, but it doesn't get there because they're not informed about what is going on.'

Investigating the potential benefits of maggots is an area Dr Harvey is already working in. With colleague Dr Melanie Thomson, from Deakin's School of Medicine, she is working on a project to trial maggot debridement therapy (MDT) to improve patient outcomes in Bairnsdale Ulcer cases. The project was recently successfully funded through Deakin's 'Research My World' initiative with crowd funding site Pozible.com.


Community approach to measuring traffic noise

2Loud? is a research project developed by Deakin University in partnership with the City of Boroondara. Through the project, researchers Dr Simone Leao and Dr Adam Krezel, School of Architecture and Built Environment, and Dr Kok-Leong Ong, School of Information and Business Analytics, have developed a mobile phone application called 2Loud? that allows citizens to monitor traffic noise in their environment.

'The World Health Organization has recently focused attention on guidelines for night noise in urban areas, based on significant medical evidence of the adverse impacts of exposure to excessive traffic noise on health, especially caused by sleep disturbance. This includes serious illnesses, such as hypertension, arteriosclerosis and myocardial infarction,' Dr Leao explains.

'The 2Loud? project starts from the understanding that traffic noise pollution is a very complex issue, and that a healthier environment would come from the integration of multiple actions from multiple stakeholders.

'Citizens, communities, transport agencies, local and state government, and scientists are all part of the solution for the problem.'

Dr Leao says the features of today's mobile phones have enabled them to be used as a tool for engagement.

'Numerous international reports have expressed the importance of public participation to help move cities and regions towards sustainable development,' she says.

'Several features of mobile phones make them a special and unprecedented tool for engaging participants in sensing their local environment. Ubiquitous smart-phones come with a growing set of powerful embedded sensors.'

Dr Leao says there are also demonstrated benefits in taking a participatory approach to environmental monitoring.

'Scientific literature and practice has demonstrated that participatory processes in environmental monitoring lead to important benefits such as increasing environmental democracy, scientific literacy, social capital, cost-effective provision of data, and potential improvement of environmental conditions,' she says.

'In the case of university-based research projects, like 2Loud?, it can make environmental science and expertise more accessible to the public while also making scientists more aware of local knowledge and expertise.'

The positive experience of the use of the 2Loud? application by the Community of Boroondara in 2013 sets the basis for further research. Next steps will follow three interrelated streams centred respectively on community, health, and technology.

For more information visit the 2Loud? project website: www.2loud.net.au.


Challenging students to discover science and engineering

Two were better than one this year when it came to Science and Engineering Challenges, with the School of Engineering hosting its ninth Geelong region event and teaming with the School of Life and Environmental Sciences to present the inaugural Warrnambool event.

The Science and Engineering Challenge is a program conducted nationally by the University of Newcastle, with participation last year reaching almost 20,000 students from more than 600 schools around Australia. It provides Year 10 students with the chance to take part in fun and practical activities aimed at igniting their interest in science, engineering and technology.

Competing in teams, students are challenged to apply their understanding of physics and engineering concepts in order to build, construct and design things that fly in the air, hover above or drive on land, use simulators, electricity, plastic, foam, balsa, rubber, tape and other items.

Once again, the Geelong Challenge was a great success. Students from 14 schools in the Geelong region and beyond competed at the Geelong Waurn Ponds Campus on Thursday 30 May and Friday 31 May, with honours going to Whitefriars College for Thursday's competition and Oberon High School for Friday's.

On Tuesday 18 June, five schools took part in the first Great South Coast Challenge at Deakin's Warrnambool Campus. On the Monday evening, an event was held at the Warrnambool City Centre to celebrate the Challenge coming to Warrnambool, with a welcome from Professor Gerry Quinn (LES).

Brauer College took out Challenge honours on the day as the winning school. Feedback from teachers from the competing schools was very positive and all indicated they would compete in next year's Challenge.

Thank you to all the Engineering, Life and Environmental Sciences, and faculty staff who were involved with the Challenges and helped make both events such a success.

See a video about the Great South Coast Challenge on the Warrnambool Standard website.


Nanoparticle research planting seeds for success

Pavani NadimintiWork by researchers from Deakin University's Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (LES), into the use of nanomaterials in plants has been highlighted with the publication of papers in two highly regarded journals.

A paper by LES PhD candidate Pavani Nadiminti was published online by ACS Applied Materials & Interfaces in February this year: http://pubs.acs.org/doi/abs/10.1021/am303208t.

Titled 'Nanostructured Liquid Crystalline Particles as an Alternative Delivery Vehicle for Plant Agrochemicals', the paper was co-authored by Professor David Cahill and Dr James Rookes from LES together with colleagues from Monash University and Nufarm Limited.

It discusses the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery.

'Lipid-based nanoparticles have been around for quite a while especially in the pharmaceutical industry but they have not been used for delivering molecules to plants,' explains Mr Nadiminti.

'Here we have used them to replace the surfactant chemicals that have been traditionally used to enable penetration of agrochemicals into plant leaves. The benefit of this is that surfactants can be toxic to the environment and cause leaf damage to the plant, but NLCPs do not.'

In May, a paper by Dr Hashmath Hussain, Associate Research Fellow LES was published online in the Journal of Nanoparticle Research: http://link.springer.com/article/10.1007%2Fs11051-013-1676-4. Co-authors on the paper are PhD candidate Zhifeng Yi and Professor Lingxue Kong from Deakin's Institute of Frontier Materials and Professor David Cahill and Dr James Rookes from LES.

The paper is titled 'Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants' and discusses the potential of these nanoparticles to be used to successfully deliver agrochemicals or biomolecules to plants.

'The mesoporous silica nanoparticles were used for the first time - to our knowledge - in a direct uptake mechanism by plants,' explained Dr Hussain. 'They have been used in isolated plant cells, but the delivery of these nanoparticles to intact plants without any damage to the plants was very good novel work in this area.'

Although the research is in its very early stages, Dr Hussain said using the mesoporous silica nanoparticles as a targeted delivery mechanism to plants could have a number of potential benefits.

These include more efficient use of agrochemicals through limiting the amount applied to the amount the plant can take up, and restricting the agrochemicals to the target plant, helping to prevent them reaching the environment.

Professor David Cahill, Associate Dean (Research) in Deakin's School of Life and Environmental Sciences and a co-author on the two papers, says the work demonstrates the potential of research collaborations.

'The research being undertaken by Pavani, Hashmath and their colleagues is at the forefront of research on the application of nanoparticles to plants. Even though we still have much to learn, these two papers show the clear advantages interdisciplinary and novel approaches can bring to addressing real world problems.'

Photo: Pavani Nadiminti (left) and Dr Hashmath Hussain


Project to catalogue web security threats

Prof Yang XiangProfessor Yang Xiang, School of IT, is leading a three-year project which has the primary objective of identifying and fighting Australia's most prevalent malware attacks.

The project is being done in in collaboration with Macquarie University and Trend Micro and has ARC Linkage Project funding. It will see large-scale analytics techniques used to analyse massive volumes of Trend Micro malware sensor data.

In an online interview with security website CSO, Professor Xiang said that Australia was a 'remarkably internet dependent country', so improving the security of the current Australian internet is 'fundamentally important'. He said the goal of the project is to use 'complementary knowledge and skills from both sides to work together and analyse the Web threats specifically targeting Australia'.

The article also quoted Professor Xiang as saying that while one project can't be expected to secure the 'whole Australian cyberspace', he hoped it could make significant contributions in this field.

Read the full article on the CSO website.


New group aims to LEAD the way for female engineering students

Ladies in Engineering At Deakin - or LEAD - is a fun networking group for Deakin University's female engineering students. The group is in its first year and runs alongside the Deakin Engineering Society (DES) group.

The idea for LEAD came from final year student Rachael Rollinson.

'I was Vice President for Professional Development in DES last year and I noticed that there were no real networking opportunities available for girls [in engineering] at Deakin... and I had the idea to do something about that,' Rachael explains.

After discussing it with others, Rachael says the idea 'just snowballed' and LEAD was born.

LEAD's aim is to 'increase opportunity through social connections and professional development, and to encourage women to get into the field of study'. The group is planning a variety of activities through the year, some just for fun - such as pizza and trivia nights - and others with a career focus, including networking with industry.

'We've been going up to the Women in Engineering Group events through Engineers Australia as a group too, helping us to network and get to know some professionals,' Rachael says.

Virginia Martin, also in her final year at Deakin, is another of the group's organisers. She says that while the group currently has a lot of senior students involved, it also has plenty to offer girls in their first and second year, especially as they're settling into university.

'It's really handy to speak to a girl who's done the same subject as you or had that lecturer or knows the best way to get that assignment done,' Virginia explains. It's a point Rachael agrees with.

'I know engineering can be quite full on at times, so it's about having someone to talk to, who has been through that,' she says.

Find out more about LEAD on the group's Facebook page - https:///www.facebook.com/groups/LEAD.Deakin or contact Rachael: rlrol@deakin.edu.au .

LEAD organisersLEAD logo

Photo: LEAD organisers: (l to r) Virginia, Rachael, Gabi and Steph.


LES researchers finding out what's Pozible

pozible websiteResearchers from the School of Life and Environmental Sciences are involved with five of the eight projects recently launched as part of Deakin University's Research My World initiative, in conjunction with crowdfunding site Pozible.com.

The projects provide a great snapshot of the diversity of research taking place in the school. They range from uncovering new information about endangered species in Papua New Guinea, to investigating seaweed as a food source, to mapping Victoria's ocean floor, to using maggots in the treatment of Bairnsdale Ulcer, to the impact of changing ocean salt concentration on marine invertebrates.

Under the Pozible funding scheme, members of the public have the opportunity to make tax-deductible donations to a range of unique research projects that appeal to their interests and concerns. The Deakin-Pozible project is believed to be the first time an Australian university has used crowdfunding to pursue research funding.

In launching the initiative, Deakin's Deputy Vice-Chancellor (Research), Professor Lee Astheimer, said crowdfunding had been successfully used to foster innovation in a number of entrepreneurial fields and the question had been asked why weren't universities trying it.

'Well now we are,' she said.

Professor Astheimer said that the Pozible experiment is consistent with Deakin's reputation as an innovator in higher education.

Use the links below to visit the Pozible site to find details and a video about each of the projects involving LES researchers:

You can also view all the Deakin projects on the Deakin Research My World page on the Pozible site.
Read the full media release about the Research My World initiative.


New engineering labs spark new opportunities

Guy LittlefairThe ability to replicate a 300 kilometre transmission line or perform research using an on-campus commercial wind turbine connected to the national electricity grid are just some of the features of two new engineering laboratories at Deakin's Geelong Waurn Ponds Campus.

'These are the latest additions to a suite of refurbished engineering laboratories and equipment that ensure facilities for engineering at Deakin are world class,' says Professor Guy Littlefair, Head of the School of Engineering. 'They are part of a number of exciting developments in engineering at Deakin, including our $55 million Centre for Advanced Design in Engineering Training (CADET) currently under design in the school.'

The Renewable Energy laboratory and Electrical laboratory will provide undergraduate and postgraduate students, as well as PhD students and researchers, with exciting new opportunities, says Professor Alex Stojcevski, the school's Deputy Head.

As well as the commercial wind turbine - likely to become a campus landmark with its location on the roof of the Engineering building - a bank of twelve solar panels has also been installed as part of the new facilities. Both are connected to Australia's electricity grid, which means the power being generated can be used or sold back to the grid. An important aspect of being connected to the grid, Professor Stojcevski says, is the ability it gives researchers and students to conduct experiments and research that are not just using a local 'micro-grid', but at a 'real-world level'.

In addition to students and researchers being able to monitor in the laboratory how much power is being generated, interested passers-by will be able to see that information on screens in the corridors outside.

'The Renewable Energy lab has equipment that allows students and researchers to not only simulate computer applications of what wind turbine or solar panel or solar wind or solar thermal power generation can do, it allows them to use real equipment,' Professor Stojcevski explains.

'This means our students can replicate what a real engineer would do, such as feel the equipment, set up the equipment and so on. For example, in the lab we can replicate a 300 kilometre transmission line, so students will be able to learn to detect faults and potentially come up with mechanisms to prevent them.'

Professor Stojcevski says the new labs have also been designed to encourage interdisciplinary learning and research.

'For instance, in the Renewable Energy lab, our mechanical engineering students can study the gears and shafts and mechanical instruments within a wind turbine, while our electrical engineering students can examine the energy that's being produced, the power and energy efficiency.'

The benefits and opportunities provided by the new labs are likely to flow on to Deakin's off-campus engineering students too, with the school looking to provide remote access to equipment as well.


Peptides helping researchers in search for Parkinson's disease treatment

Richard WilliamsAustralian researchers, including biomedical scientist Dr Richard Williams, School of Life and Environmental Sciences, have taken the first step in using bioactive peptides as the building blocks to help 'build a new brain' to treat degenerative brain disease.

Dr Williams is working in a team with Dr David Nisbet from the Australian National University and Dr Clare Parish at the Florey Neuroscience Institute to develop a way to repair the damaged parts of the brain that cause Parkinson's disease.

Parkinson's disease develops when the brain cells (or neurons) that produce the chemical dopamine die or are damaged. Dopamine neurons produce a lubricant that helps the brain transmit signals to the body that control muscles and movement. When these cells die or are damaged the result is the shaking and muscle stiffness that are among the common symptoms of the disease.

'We are looking at a way of helping the brain to regenerate the dead or damaged cells that transport dopamine throughout the body,' Dr Williams said.

'Peptides help the body heal itself, providing many positive benefits for health, particularly in regenerative medicine; this is why the sports people were using them to recover more quickly in the current doping scandal.'

Peptides are both the building blocks and the messengers of the body; the team has used them to mimic the normal brain environment and provide the chemical signals needed to help the brain function.

'Peptides stick together like Lego blocks, so in the first stage of the project we have been able to make a three dimensional material or tissue scaffold that provides the networks cells need to grow; but the peptides also carry instructions in the form of chemical signals which tell the cells to grow into new neurons,' Dr Williams explained.
'Importantly, this material has the same consistency as the brain, does not cause chronic inflammation and is non-toxic to the body.

'Our aim is to use this scaffold material to support the patient's own stem cells that could be turned into dopamine neurons and implanted back into the brain. We expect that when implanted the material and stem cells would be accepted by the brain as normal tissue and grow to replace the damaged or dead cells.'

The results of the first stage of this Australian Research Council funded project will be published in the international journal Soft Matter.

Full media release


Ending the wildlife Catastrophe

wildlifeAccording to Dr Euan Ritchie, School of Life and Environmental Sciences, the dingo may have a real role to play in helping reduce the feline impact on Australia's wildlife.

Talking to renowned science commentator Robyn Williams on The Science Show, Dr Ritchie said: 'Well, it's a strange situation I guess to use one predator to fix a problem that of course is with another predator, but what we know from around the world is that top predators or apex predators as some people call them are quite useful in controlling other species.'

Full story including a link to the interview


Deakin researchers on the road with Catalyst

boatThe Thursday March 14 episode of ABC TV's Catalyst: On The Road features not one, but two stories highlighting the work of Deakin researchers from the School of Life and Environmental Sciences.

Marine scientist Dr Daniel Ierodiaconou (Warrnambool Campus) gives an insight into what lies beneath Victoria's coastal waters through the research project he is leading to map the ocean floor.

Back on dry land, it's into the field at the Great Otway National Park for a look at the research wildlife biologist Dr Desley Whisson (Melbourne Burwood Campus) is doing into koala-habitat systems and developing ways to conserve the koalas and the habitat they depend on.

The Catalyst: On The Road episode airs Thursday 14 March at 8.00pm. For more information including episode repeat times visit the ABC website.


Back to top