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S
ystems that can change their 
behavior in response to unexpect-
ed conditions and events during 
operation are known as autono-
mous [1]. Autonomy refers to 

the capability of a machine to perform a 
task, or part of it, with no—or substantially 
reduced—human intervention. Over the 
years, autonomous systems have appeared and 
sometimes dominated various aspects of 
human daily activities, such as in robot-con-
trolled operations.

The levels of autonomy range from teleop-
eration to fully autonomous systems [2]. 
Autonomy can be categorized into two broad 
classes: human-in-the-loop (HITL) and human-
on-the-loop (HOTL). Machines that carry out a 
task for a time period, then stop and wait for 
human commands before continuing are 
known as HITL systems, while machines that 
can execute a task completely and indepen-
dently but have a human in a monitoring or 
supervisory role, with the ability to interfere if 
the machine fails, are known as HOTL sys-
tems [3]. HOTL systems can also be fully 
autonomous if human supervisors allow them 
to perform a function entirely on their own.

Safety, accuracy, and security have always been major 
concerns pertaining to the adoption of autonomous sys-
tems. HOTL systems, in particular, require a high level of 
trust to be accepted in our daily lives. Trust translates as a 
human operator’s willingness to rely on the actions 
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performed by an autonomous system [4]. Trust depends on 
the specific system and circumstances as well as on the 
environment the system is working in and the operator’s 
background and beliefs [5]. Achieving the trust that can 
lead to realizing particular objectives individually and 
accurately in uncertain conditions over a long period of 
time without human involvement has always been the 
main goal with autonomous systems. 
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so-called 4D tasks (dangerous, dirty, difficult, and dull) in a 
variety of sectors. The RAS field is assuming a progressively 
more important role in such diverse areas as addressing 
national defense and security challenges, enhancing our 
health-care system, assisting with our aging population, 
making our roads safe, and enabling greater productivity in 
manufacturing. Examples include working in the ocean 
depths, in nuclear power plants, at repetitive manufacturing 
operations, and on delicate surgeries in remote locations. In 
addition, RAS applications can minimize soldiers’ risks by 
removing them from the battlefield, collecting information 
about the battle environment, and traveling between way-
points without human assistance. In general, the RAS area 
consists of interconnected and interactive systems that can 
perceive their surroundings, reason about events, make or 
modify plans, and control their activities.

A report by the McKinsey Global Institute [8] has identified 
advanced robotics and autonomous and near-autonomous 
vehicles as two of a dozen emerging disruptive technologies 
that could have a transformational impact on our lives, busi-
ness activities, and the global economy. In this regard, it is esti-
mated that advanced robotics alone will generate annual 
economic activity of US$1.9 trillion to US$6.4 trillion by 2025 
[8], [9]. For safe, reliable, and effective RAS deployment, close 
collaboration and communication between humans and 
robots is necessary. Human–robot interaction has become 
vital, as it allows operators to quickly comprehend the state 
of the system under control and efficiently supervise its 
activities to achieve a new, preferred state.

While RAS technologies have started to emerge from 
research laboratories into industry and society, compre-
hensive efforts are required to demonstrate, test, and de-
risk these technologies to make them trustworthy. How 
this can be achieved and realized needs to be carefully 
considered and investigated by subject-matter experts.

Different Forms of Autonomy
Owing to significant technological advances, RAS has 
already become part of our lives and will continue to do 
so. Different forms of autonomy have been used in RAS in 
recent decades. As stated previously, the two main forms 
of autonomy in RAS are HITL and HOTL. HITL systems or 
semiautonomous RAS are robots that perform a task 
autonomously for a time period, then halt and wait for a 
human operator’s commands before continuing [3]. For 
example, HITL autonomous weapons use autonomy to 
search for, detect, and evaluate threats and then select and 
engage separate targets under human control (that is, 
humans decide the targets to be selected and engaged). 
The Raytheon Patriot antimissile system is an HITL sys-
tem. The Patriot system can select a target according to 
human-defined rules, but will not engage the target until 
receiving confirmation from the human operator [10].

HITL is increasingly being replaced by HOTL in RAS. 
HOTL or human-supervised autonomous robots can per-
form a function completely without human help, but with a 

Robots have become popular in many industries, and it is 
anticipated that robotics technologies will dominate most 
aspects of our lives in the coming decades [6], [7]. The field 
of robotics and autonomous systems (RAS) constitutes one 
of the emerging breakthrough areas in science and technolo-
gy in the 21st century, enabling innovations for our business-
es and society. Humans have benefited and will continue to 
benefit from RAS technologies capable of carrying out 
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human in a monitoring or supervisory role who has the abil-
ity to interfere with and override the robot’s decision if the 
robot should fail or if there is any error [3]. HOTL RAS can 
be also fully autonomous if the human supervisor allows 
them to carry out a task completely on their own. Keeping 
the human on the loop adds a needed human–robot interac-
tion and human–machine interface. The degree of autono-
my is determined based on the RAS’s relationship to the 
human supervisor. HOTL RAS receive, evaluate, decide, and 
begin execution of an operation, but the human supervisor 
can veto or stop it when necessary. For example, HOTL RAS 
weapons are systems that use autonomy to choose and 
engage targets. While the human supervisor does not decide 
the selected targets to be engaged, the human can monitor 
the RAS weapon system’s intention and performance and 
can interfere to stop its operations if required.

Currently, HOTL weapon systems are increasingly 
being used for defense applications, which include air and 
missile defense systems. The Phalanx is a defensive, close-
in naval weapon system (a fast-fire, computer-controlled, 
radar-guided gun system) created to shoot down antiship 
missiles and surface threats. Once activated, it searches, 
detects, and evaluates threats and then tracks and engages 
the threat. An abort button is available for the human 
supervisor to reject the system’s decision. The main ques-
tion is whether these HOTL weapon systems are trustwor-
thy. That is, can they distinguish blue and red teams on the 
battlefield? And are they ethical? To have a usable and use-
ful HOTL RAS, trusted autonomy becomes essential.

Trusted Autonomy
Trust is a firm belief in the reliability, truth, or ability of 
someone or something. An autonomous system requires 
the reliability of and trust in its technology. With RAS, trust 
is defined as the level of confidence a human has in an 
autonomous system based on the person’s observations, 
perceptions, and expectations of the system’s performance 
and on other information regarded as evidence of compe-
tence [11]. Trust in HOTL RAS is also defined as the ability 
of HOTL RAS to successfully perform an activity, at a spe-
cific time, and under conditions characterized by vulnera-
bility and uncertainty [12].

If the actions of HOTL RAS lead to harmful consequenc-
es to humans or belongings (e.g., from an unmanned aircraft 
or a driverless vehicle), the human supervisor needs to rees-
tablish and maintain trust in the operations of HOTL RAS 
[13]. Humans need to be confident that HOTL RAS will per-
ceive conditions properly in all situations, make the right 
decisions, and perform its tasks accurately and efficiently. 
For building trust in HOTL RAS, the systems have to be cer-
tified. Certification is a formal means by which a regulator 
confirms the expected efficiency and performance of vari-
ous components of an autonomous system.

A general HOTL RAS includes a number of essential 
units [14]: 1) a sensing and perception unit, which involves 
the abilities to sense, interpret, detect, and evaluate 

objects in different environments; 2) a control and deci-
sion-making unit, which involves the ability to make accu-
rate decisions in an uncertain and unpredictable 
environment; and 3) an execution unit, which involves the 
ability to perform tasks provided by the control and deci-
sion-making unit. Intelligent systems play the main roles in 
the control and decision-making unit, which include learn-
ing, adaptation, and cognition. Learning is the acquisition 
of knowledge, skills, or abilities through experience, as 
observed by the attainment of increasing success 
(enriched behavior). Adaptation is a change and modifica-
tion in behavior when the environment is changed. Cogni-
tion includes learning development, adaptation, and 
natural interaction through intelligent behavior in 
response to complex objectives in a complex environment. 
Cognitive mechanisms are required for decision making in 
RAS. John Boyd distilled the decision-making process into 
an observe, orient, decide, act scenario, which is known as 
the OODA loop [15]–[17]. Boyd realized that it is necessary 
for military pilots to make decisions faster and more accu-
rately than their opponents, and he used the OODA loop 
concept for the combat and military operations process 
[18]. The structure of the OODA loop is shown in Figure 1.

Trusted autonomy is the greatest technical barrier that 
needs to be overcome in HOTL RAS. As technology evolves, 
HOTL RAS can become intelligent in learning, adaptation, and 
decision making without direct human engagement. To mea-
sure trust, a number of quantitative factors related to system 
behavior must be checked: 1) performance, which includes 
competence, accuracy, reliability, and robustness; 2) transpar-
ency of the control and decision-making unit; and 3) security 
vulnerabilities [19]. To quantify the degree of trust, these fac-
tors need to be measured in certain and uncertain environ-
ments. In addition, efficient human–robot interaction 
positively affects humans’ trust in HOTL RAS. Trust can be 
established through an efficient way of communicating and 
disseminating information. The human supervisor needs cor-
rect information from the system to establish suitable reliance 
and prevent system misuse and malfunction. Understanding 
the reasons for system failures can increase trust. In addition, 
providing essential information and making the autonomous 
system a team player inevitably increase trust.

A Framework for Formulating Trusted Autonomy
It is argued that there are three main factors in fostering 
trusted autonomy between humans and RAS: 1) the 
humans who are interacting with RAS; 2) RAS; and 3) the 
environment in which RAS are intended to function, as 
shown in Figure 2.

The Humans
Since HOTL RAS are designed to be managed and super-
vised by humans aiming to benefit from them, humans and 
their desires are the most important factor. Different 
humans have different viewpoints pertaining to RAS, 
according to their role. A human’s perception is based on 
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personally observed or received evidence and is affected by 
personal experience and culture. Culture and background 
are multifaceted, such as ethical, religious, and professional 
affiliation and age. For example, the younger generation has 
more confidence in autonomous systems than the elderly 
because different new technologies such as smartphones 
and the Internet are second nature to young people. There-
fore, cultural and demographic differences play a significant 
role in fostering trusted autonomy between humans and 
HOTL RAS [20]. Trust, in addition to being influenced by 
culture and demographics, can vary according to experi-
ence and circumstances [21]. In other words, the level of 
trust differs from one individual to the next. 

RAS
A certain level of competency, which leads to trustworthi-
ness, is necessary for all designed RAS. The notion of com-
petency should be precisely detected, measured, and 
evaluated as a feature of RAS. The competency depends 
on the RAS’s structure and performance in different sce-
narios. The competency of RAS can be measured and eval-
uated based on the outcome of different tests. During the 
test phase, if known inputs lead to expected and satisfac-
tory results, the human can be confident that RAS are 
functional as expected.

A person’s confidence can be enhanced by checking not 
only what operation RAS should perform and when, but also 
the reason and justification for RAS acting so [13], [22]. 
Therefore, human–machine interaction (and collaboration) 
is vital for the human operator to understand the reason for 
each RAS operation in an attempt to build confidence with 
respect to the RAS’s capability.

The Environment
The environment is an important influence, since RAS 
need to respond and act based on environmental circum-
stances. The sensor inputs form the RAS’s perception of the  

environment. Therefore, perceiving the environment prop-
erly is a significant part of the RAS’s ability to respond to it 
and make decisions accurately. The human supervisors 
might impose some constraints on the system’s behavior 
as part of safety measures aiming to reduce any potential 
negative or harmful complications of RAS. If the degree of 
confidence increases, the applied constraints can be 
relaxed over time. But constraint relaxation needs to be 
matched with the RAS’s verified trustworthiness.

Since ensuring that RAS can be trusted and remain com-
petent is a major concern today, HOTL RAS need new 
approaches to establish what we might call certifiable trust. 
For establishing certifiable trust and enabling the capabili-
ties of HOTL RAS, a number of factors and challenges need 
to be addressed.

How to Establish Trusted  
Autonomy in HOTL RAS
While advanced technologies are emerging, it is still a 
great challenge to enable HOTL RAS to sense and under-
stand the surrounding environment, comprehend and per-
ceive objectives, make informed decisions, and complete a 
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mission successfully without hurting people. Advances in 
machine intelligence with respect to learning, adaptation, 
decision making, and perception contribute toward estab-
lishing trusted autonomy in HOTL RAS. As such, a variety 
of technologies must be developed, tested, enhanced, or 
even invented before the potential of HOTL RAS can be 
fully realized. While the applications and benefits of HOTL 
RAS are endless, proliferation of these systems in our lives 
creates real concerns and significant risks, especially in 
safety-critical tasks in areas such as warfare, health care, 
and transportation.

Better Haptic Sensors and Accurate  
Data Collection
Future RAS capabilities require more accurate three-dimen-
sional (3-D) measurements of the environment for automat-
ically detecting terrain or environmental properties to 
enable better movement and performance. Currently, state-
of-the-art sensor technologies are relatively slow, large in 
size, and more power-demanding than desired, requiring 
humans to review, plan, and develop certain operations. 
Therefore, reducing the size, weight, and power consump-
tion of 3-D sensing technology is also important. In addi-
tion, RAS sensors and data acquisition are highly 
susceptible to degradation under poor weather conditions, 
adding to untrustworthiness. Future 3-D sensing technolo-
gy should consider improvements in a number of factors: 1) 
frame rate, 2) maximum range, and 3) spatial and range res-
olution aiming to increase the exploration range of the 
operating environment, ensure safe operation in hazardous 
terrain, and provide safe object manipulation when humans 
are closely involved. It is also essential to have accurate 
estimation of the relative position or velocity of RAS on a 
centimeter-per-second scale. 

Furthermore, current touch sensors are delicate and 
expensive and tend to drift in response to temperature 
changes, as they are sensitive to environmental conditions. 
Therefore, haptic sensors that are small, low cost, and reli-
ably high resolution and that have good functional band-
width are essential to enable RAS to handle delicate 
objects as capably as humans. RAS also need to learn to 
ignore the haptic effects of their own motions so they can 
better identify the sensations caused by contacts with the 
outside world.

The availability of accurate data is another challenge in 
designing and developing trusted autonomy for HOTL 
RAS. Sensor data in RAS should be collected accurately, 
without losing any information during the process of pro-
ducing the correct control output. The operation of the 
majority of RAS, such as driverless vehicles, depends on 
the Global Positioning System (GPS). This high dependen-
cy puts RAS at risk in situations where the GPS signals are 
lost or spoofed. RAS could hurtle in entirely the wrong 
direction when receiving counterfeit GPS signals. Gaining 
a better understanding of the broader implications of GPS 
spoofing is essential for safe operation of RAS.

Machine Intelligence, Learning,  
Reasoning, and Perception

A Better Intelligent System
To further realize trusted autonomy in RAS, real-time 
access to environmental information and comprehensive 
analysis must come together efficiently. Intelligent mapping 
algorithms that construct 3-D models of the environment 
using state estimates and sensor measurements are neces-
sary for efficient RAS operation. A great demand in this 
domain is to generate geometric maps that aid in autono-
mous navigation and object manipulation. In addition, new 
technologies for static as well as dynamic object recogni-
tion are important to allow RAS to operate accurately.

There is currently a lack of intelligent algorithms able 
to perform complex activities in complex environments. 
Developing autonomous capabilities to operate effectively 
and precisely in unpredictable environments is still a huge 
challenge. Autonomous robots should be able to perform 
their tasks intelligently and adapt to different environ-
ments without direct human supervision for each task. In 
an unpredictable environment, RAS need to observe their 
environment, understand it, and adjust their performance 
accordingly. In situations when humans and RAS work in 
close proximity, it is important for RAS to recognize 
humans and their activities. In this case, for the sake of 
human safety it is imperative to ensure that RAS percep-
tion algorithms function accurately. In particular, the 
future autonomous robot has to carry out its tasks in a 
dynamic environment that is subject to changes and with-
out a human dedicated to directly controlling the tasks.

Full autonomy in RAS can be very challenging 
because of ambiguity resulting from noisy sensors, the 
lack of safety guarantees, unpredictable environments, 
inefficient perception algorithms, and unmodeled opera-
tor intentions. Therefore, isolated decision-making sys-
tems are shifted to those that share control, with 
important autonomy devolved to RAS, leaving the human 
supervisor to monitor the decisions. Significant innova-
tion is expected to occur in the future from sharing con-
trol between RAS and humans, with HITL stimulus and 
motion mapping enabling robots to learn how to predict 
and adapt according to real-world conditions and per-
form safely in the HOTL mode. 

Better Decision Making
The chief difference between a human and an RAS is deci-
sion making. RAS decision making depends on the received 
information and the way the machine perceives it. Decision 
making in HOTL RAS should be performed even if the 
information is limited or ambiguous. The human brain is 
very adaptive and able to distinguish apparent decisions 
from circumstances that need more thought. However, 
decision-making algorithms are gradually being improved 
using more flexible and robust algorithms that can focus 
on the quality of decision making by reasoning in a way 
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similar to the human brain. Nevertheless, the maturity of 
this technology is still a long way off. As computers and 
decision-making algorithms have become more advanced, 
it has become necessary that they be continually tested and 
assessed in unpredictable environments. Therefore, while 
humans have abilities such as manipulation, dexterity, deci-
sion making, and perception, current RAS technologies are 
very far away from this. These problems need to be 
addressed in further research related to HOTL RAS.

Nowadays, researchers are trying to give RAS the ability 
to make their own decisions in wide-ranging circumstanc-
es. While today’s most advanced RAS can handle diverse 
situations, they still have some problems pertaining to 
ambiguity resulting from inaccurate sensors, inefficient 
learning and decision-making algorithms, lack of safety, 
and unpredictable environments. The learning and deci-
sion-making algorithms should be more developed and 
improved to make the future RAS more capable, reliable, 
independent, and accurate, with safety and efficiency in 
performance guaranteed. Therefore, through advances in 
artificial intelligence, RAS can acquire more active behav-
iors and plan their actions in complex, unpredictable, and 
unfamiliar environments. Human safety (the safest physical 
interaction) is the first priority, and efficiency is the second.

In the future, efforts should be dedicated toward produc-
ing autonomous robots that are lighter, more accurate in 
facing different environments, and more cost effective and 
that have better quality in terms of performance and safety 
as compared with those currently available. Future robots 
should be easily handled by users with different skill levels 
through designing a user-friendly interface to minimize pro-
gramming and controlling costs. Some novel techniques and 
robust control algorithms for making correct and ethical 
decisions under conditions of uncertainty are essential.

Better Teaming, Human–Autonomous  
System Interaction, and Collaboration
Human–robot interaction has become more and more 
important in recent years because of the increasing num-
ber of complex RAS as well as our exposure to such tech-
nologies in our lives [23]–[25]. Human–robot interaction is 
a research area dealing with understanding, designing, and 
assessing robotic systems to be used by or with humans. 
The human–robot interaction challenge is to understand 
and create interactions between one or more robots and 
humans and to determine how these interactions can be 
influenced and improved to a certain level while safety, 
ease of communication, and precision and efficiency of 
performance are guaranteed. Human–robot interaction 
covers the classical domain of remote robotics and telero-
botics (for example, haptics), human–system interfaces, 
and improved reality as well as new subjects that contain 
human–system integration, human safety, human–robot 
teams, and supervision with time delays in remote areas.

Research on RAS, intimate human collaboration in 
manipulation tasks, human control and behavior 

of humanoid and anthropomorphic robots for hazardous 
environments, and social interaction with RAS is at the ini-
tial stage at the moment, and there are many problems that 
need to be addressed in the future [23], [26], [27]. Advanced 
technologies in human–system interaction need to be 
explored for enhancing humans’ situational awareness, 
developing RAS to receive a human’s intent, and allowing 
RAS to perform safely. Well-developed human–machine 
interfaces can improve human–robot interaction capabili-
ties, making a system understandable and reducing human 
errors while operators are on the loop. Advanced human 
interfaces are able to communicate with clarity about their 
objectives, abilities, strategies, and accomplishments; coop-
erate to solve issues, particularly when the circumstances 
shift away from autonomous abilities; and communicate 
through multiple modalities (speech and gestures). There-
fore, a more efficient way of communicating and dissemi-
nating information can enhance trust, as human supervisors 
need the appropriate information from RAS to build confi-
dence and prevent system failures and malfunctions.

In human–robot teaming, RAS should be able to respond 
to a dynamic environment as fast as possible, decreasing 
the load of human teammates needed to explicitly manage 
and direct their activities. Other essential qualities for the 
HOTL RAS are dynamic adaptation, capability to self-orga-
nize and dynamically restructure, robustness to the addition 
and loss of agents, and agent-to-agent collaboration.

Supplementary information about the human team-
mates’ current cognitive and emotional state needs to be 
delivered to an RAS teammate for making decisions that 
could enhance human–robot team performance. By 
including electroencephalogram, electrocardiogram, and 
pupil diameter measures (as shown in Figure 3), which 
could be utilized to evaluate the workload in near real 
time, advanced online frameworks can be developed to 
create a closed-loop system to enhance the RAS behavior.

In addition to the aforementioned challenges, a better 
transparency and trust-based bias in the human–machine 
context is essential. Calibrated trust could be obtained 
through an understanding of and confidence in the RAS’s 
behavior and decision-making capabilities as well as trans-
parency to enable humans to understand what RAS are 
doing and for what reasons. Developing a common under-
standing and shared perception is another challenge in 
HOTL RAS. For humans and robots to have shared under-
standing, perception, and situational awareness, informa-
tion should be shared in common and transmittable in 
logical formats and time scales. 

Better Evaluation
Developing HOTL RAS for some critical applications such 
as armed autonomous systems requires making accurate 
distinctions between combatants and civilians. This is par-
ticularly challenging as nowadays combatants often inten-
tionally disguise themselves as civilians to avoid 
detection. Even if HOTL RAS had 99% accuracy, it would 
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still be imperative not to accidentally sacrifice even one 
human life. Therefore, it is not probable that fully autono-
mous RAS will be sent into the battlefield when civilian 
lives might be at risk, at least not until a satisfactory result 
could be provided in terms of absolutely trustworthy 
detection, evaluation, decision making, learning, and per-
formance. New methodologies and metrics must be devel-
oped to evaluate distributive control and situational 
awareness. In addition, developing test protocols to sup-
port on-board management system evaluation and autono-
mous shutdown is also required for future HOTL RAS.

Furthermore, developing realistic test-bed components 
and environments to support HOTL RAS evaluation is nec-
essary. In this respect, driving simulators (e.g., the Univer-
sal Motion Simulator [28], as shown in Figure 4) are safer 
and more cost-effective tools to evaluate new autonomous 
vehicle designs as well as human behavior in a virtual 
environment [31]–[33]. The degree of human trust in a 
designed autonomous vehicle can be measured through 
driving simulators before an actual test drive, as can the 
efficiency of human–robot interaction when the driver is 
supervising the driving scenarios.

Better Protection
The majority of HOTL RAS, such as driverless cars or 
unmanned aerial vehicles, greatly rely on sensors, on-
board computers, and networks to collect, store, 
 process, and communicate data . Therefore, as 

software-intensive HOTL RAS become 
more prevalent, the threat of attacks 
from hackers grows. Cyberattacks on 
these systems through the digital net-
work (hacking) could lead to catastro-
phes. Vu lnerabi l it ies exploited by 
cyberattackers could be in the software 
of RAS, in security policies, or in commu-
nication technologies. Poorly designed 
and protected RAS become vulnerable 
targets for criminals or extremists to 
remotely take partial or full control of 
these systems and misuse them to 
achieve their objectives. An attacker can 
manipulate all safety-critical systems 

through accessing a vehicle’s electronic control unit [29].
There is no question or doubt that RAS such as driver-

less cars could be hijacked. A car hijacked by a malicious 
party becomes an immediate physical threat. While car 
manufacturers focus on safety engineering, the security 
aspect of software engineering needs to be enhanced.

Better Legislation and Ethical Regulation
How and when RAS can make a correct ethical decision is 
a hot issue. For example, should a driverless car with full 
autonomy sacrifice its passengers to avoid crashing into a 
bus or building full of people? Another example is RAS 
used in combat. The use of HOTL RAS in the military rais-
es many moral and ethical concerns. For example, is it 
permissible for HOTL RAS to sacrifice one innocent per-
son to help save tens of others? Existing RAS technology 
complies with the laws of war and rules of engagement. 
However, the artificial intelligence and robotics societies 
face an important ethical decision: whether to support or 
oppose the development of lethal autonomous weapons 
systems (LAWS) [30]. LAWS is defined as the third revolu-
tion in warfare, after gunpowder and nuclear arms.

Programming and giving license to HOTL RAS to harm or 
kill under certain conditions are something many experts 
have warned about. How to ensure that humans and RAS 
coexist safely is a great challenge. Another is how HOTL RAS 
could distinguish between red and blue teams or civilians. If 
HOTL RAS are not able to tell the difference, many innocent 

people could be hurt or killed. Some envi-
ronments, including the battlefield, have 
more complex social rules than those in fac-
tories or hospitals. Therefore, HOTL RAS 
should be able to correctly perceive, create, 
and understand dynamic models of their sur-
roundings. RAS should accurately categorize 
objects around them and recognize and 
detect humans as well as their emotions 
before making any decision. How humans 
and the RAS could complement each other 
is also yet to be fully investigated. Due to 
these obstacles and the current technology 
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Figure 3. the teaming of future autonomous systems. [Images 
courtesy of cgtrader (soldier), Pintrest/caudate-nucleus (brain), and 
stock-clip.com (skeleton).]

Figure 4. the Universal motion Simulator [28].
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shortcomings, equipping HOTL RAS with full autonomy has 
become the Holy Grail. 

Legal and regulatory frameworks need to be revised to 
keep up with the technological advances. The current lack 
of clarity in the legislation and laws in handling incidents 
pertaining to HOTL RAS technologies poses an important 
issue that needs to be resolved. Nevertheless, there is no 
doubt that humans and RAS should work in harmony, 
maximizing the strength of both. Indeed, the real frontier 
is collaboration between RAS and humans, which includes 
trusted autonomy. However, different levels of autonomy 
in different RAS technologies should be imposed under the 
control of a human supervisor. It is imperative that the 
human component be at the heart of RAS capabilities.

As it is inconvenient and in some cases unsafe to use 
untested RAS close to humans or where human lives are 
involved, RAS must be deployed with restricted functional-
ity as assistants to humans until a testing procedure is 
completed in the future. Therefore, newly produced HOTL 
RAS should operate only under supervision by humans for 
all the critical tasks where humans could be at risk, and 
they should be given more duties only when their ethical 
decision making, evaluation, and learning algorithms 
become more effective and efficient.
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