Product Specialization in International Trade:
A Further Investigation

Cong S. Pham
Product Specialization in International Trade:
A Further Investigation †

Cong S. Pham *

Abstract

In an influential paper, Schott (2004) makes two empirical observations about U.S. imports. (1) The United States is increasingly sourcing the same product (however narrowly defined) from both developed and developing countries. That is, ‘across-product specialization’ has been decreasing. (2) The unit values of these multiple-sourced products are positively and significantly correlated with the capital and skill abundance of exporters and with the capital-labor ratios used by exporters. That is, endowments-driven ‘within-product specialization’ has been increasing. We show that both these observations extend to the imports of Brazil, India and Japan. However, our main finding is that observation (1) is largely driven by two factors. First, China is the dominant low-wage exporter of multiple-sourced products. Second, the most developed countries remain the primary exporters of multiple-sourced products. The U.S. case is the most extreme of our four importers: When China is deleted from the U.S. import data there is no trend in across-product specialization and rich exporters are increasing their trade share of multiple-sourced products. Since deleting China has no theoretical justification, these results must be viewed not as a contradiction of Schott’s work but as a way of deepening our understanding of his empirical results.

Keywords: China, Heckscher-Ohlin Model, International Trade, Multiple Sourcing and Product Specialization.

JEL classifications: F11; F2

† I am profoundly indebted to my advisers, Mary E. Lovely and Devashish Mitra for guidance and invaluable comments. I also would like to thank the editor (Dan Trefler) and three anonymous referees for their extremely helpful comments and suggestions. I also wish to thank Peter Schott for providing me with his dataset. This project was completed when the author was working as a consultant to the World Bank. The views expressed herein and any errors are those of the author.

* School of Accounting, Economics and Finance, Deakin University, 221 Burwood Highway, Burwood, 3125, Victoria, Australia. Email: cspham68@gmail.com.
I. Introduction

Schott (2004) makes two fundamental observations about highly disaggregated U.S. imports. First, the United States increasingly imports the same products from low-wage, middle-wage and high-wage countries. Further, the number of products it imports exclusively from low-wage or middle-wage countries is insignificant. He refers to this as a lack of ‘across-product specialization.’ Second, within each product but across exporters, unit values vary systematically with exporter factor endowments and exporter capital-labor production techniques. He refers to the variation in unit values as ‘within-product specialization.’ Schott concludes that factor proportions theory can explain within-product specialization, but not the lack of across-product specialization.

In this paper, we provide further evidence on the pattern of product specialization in U.S. import data. Moreover, in order to look for patterns that characterize product specialization in world trade in general, we also examine the imports of Brazil, India and Japan. This paper builds on the method pioneered by Schott. Using Schott’s product level focus, we show that the phenomenon of multiple sourcing (i.e., lack of across-product specialization) is driven almost exclusively by two features of the data. First, China is the dominant low-wage exporter of multiple-sourced products. Second, the most developed countries remain the primary exporters of multiple-sourced products. These factors are most pronounced in the U.S. case (as opposed to Brazil, India and Japan). When China is deleted from the U.S. import data there is no trend in across-product specialization and rich exporters are increasing their trade share of multiple-sourced products.

Schott (2004) was aware that China might be an issue and indeed deleted China from his analysis. See his sensitivity analysis of table III. However, his table does not adequately convey the importance of China for his result. Interestingly, Schott (2007) as well as Rodrik (2006) have returned to this theme of the uniqueness of China.
The exact interpretation of these results is not completely clear. For one, an earlier version of this paper showed that Schott’s results about U.S. within-product specialization hold equally well for Brazil, India and Japan. This buttresses what is arguably Schott’s most important conclusion. For another, there is no theoretical justification for excluding China when re-examining Schott’s across-product specialization result. For example, it is possible that in the absence of China, other low-wage countries would have picked up the slack and started exporting to the United States, Brazil, India and Japan. Our result is instead best interpreted as deepening our understanding of the underlying data upon which Schott based his conclusions.

II. Data, Analytical Framework and Results

Data

U.S. product-level import data from 1972 to 1994 are compiled from Feenstra (1996). Brazilian, Indian and Japanese product-level import data are available from the United Nations Commodity Statistics Trade Database (UN Comtrade). These data are available from 1989 to 2004 and grouped according to six-digit classifications of the Harmonized Commodity Coding System - Revision 2. All the data correspond to SITC (Revision 2) manufacturing industries (1-digit SITC = 5, 6, 7 and 8).

Analytical Framework

The theoretical foundation of our analytical framework is a standard Heckscher-Ohlin model in which there are three cones of diversification associated with three groups of countries: low-wage, middle-wage and high-wage countries. With complete specialization, low-wage countries have a comparative advantage in the least capital-intensive products while countries of middle-

1 These U.S. import data are classified according to seven-digit Tariff Schedule of the U.S. codes from 1972 to 1998 and according to ten-digit Harmonized System (HS) codes from 1989 to 1994.
2 Chinese exports to Brazil, India and Japan are available from 1992 to 2004 only.
3 We rely exactly on the analytical method laid down by Schott (2004).
wage and high-wage groups completely specialize in the production of medium and high capital-intensive products, respectively.\(^4\)

Empirically, three cohorts of low-wage, middle-wage and high-wage U.S. trading partners are defined according to whether their GDP per capita is in the 0\(^{th}\) to 30\(^{th}\), or the 30\(^{th}\) to 70\(^{th}\), or the 70\(^{th}\) to 100\(^{th}\) percentiles of the world GDP per capita distribution respectively. For trading partners of Brazil, Indian and Japan the cutoffs are the 40\(^{th}\) and 80\(^{th}\) percentiles.\(^5\)

We then define six types of “products” from the data.\(^6\) L, M, and H products are those that originate exclusively from low-wage, middle-wage, and high-wage countries, respectively. LM products are those imported simultaneously from both low-wage and high-wage countries and MH products from both middle-wage and high-wage countries. Finally, LMH products originate simultaneously from at least one low-wage and one high-wage country. As Schott points out, the logic of the Heckscher-Ohlin model holds if the unit values of LMH products that are produced by high-wage countries are systematically and significantly higher than the unit values of LMH products produced by middle-wage and low-wage countries.

Decreasing Across-Product Specialization: the Role of China and High-wage Countries

Schott (2004) makes two empirical observations. (1) There are an increasing number of products imported by the U.S. simultaneously from low-wage, middle-wage and high-wage countries. Re-

\(^5\) We use those cutoffs for the following reasons. First, Brazil, India, and Japan have disproportionately small numbers of low-wage trading partners when the cutoffs are the 30\(^{th}\) and 70\(^{th}\) percentiles. Second, with the 40\(^{th}\) and 80\(^{th}\) percentiles as the cutoffs China remains a low-wage country throughout the 1989-2004 period. From 1989 to 2004, on average the number of low-wage, middle-wage and high-wage trading partners are 15, 36 and 21 for Brazil; 18, 36 and 20 for India; 20, 43 and 21 for Japan. We, however, get results that are more supportive of our argument when we use the 30\(^{th}\) and 70\(^{th}\) percentiles for Brazil, India, and Japan.

\(^6\) In the theoretical Heckscher-Ohlin model a product is associated with unique capital-labor intensity. Data actually aggregate products of similar end uses. Consequently, “products” belonging to the same product classification may be associated with different production techniques.
stated, there is decreasing across-product specialization. (2) The unit values of these products are positively and significantly correlated with exporter relative capital and skill abundance and with exporter production techniques (capital-labor ratios). We also find robust evidence of observation (2) for products imported by Brazil, India and Japan. This was reported in an earlier version of the paper. The focus of the analysis in this paper is about what explains observation (1).

Figure 1A displays the evolution of shares of U.S. imported products by source of importers. Since the shares of L, M and LM products are extremely small we choose to combine them in the graph. Figure 1A presents exactly the same trends for H, MH and LMH products as in Schott (2004). Two important features of the data stand out. First, the percent of MH and H products is in steady decline. Second, the share of LMH products is increasing over time and becomes the most important type of product exported to the U.S.

The evidence above, at first sight, is clearly not consistent with the established fact that most of world trade takes place among developed countries. Given China’s status as a low-wage exporter and the exceptionally high growth rate of its exports for the last three decades we now investigate whether Chinese exports drive the trend in LMH products. Further disaggregation of the data by source shows that this is indeed the case. Figure 1A also presents an additional curve, LMH 2, which represents the shares of LMH products for which China is the only low-wage exporter to the U.S. market. It is graphically clear that the evolution of LMH products originating from low-wage countries and the evolution of those LMH products having China as the only low-wage exporter follow a similar upward trend, which indicates that the number of LMH products that other low-wage countries export to the U.S. remains the same throughout the 1972-1994 period.

To confirm the finding above, Figure 1B depicts the shares of H, MH, LMH and L+M+LM products when we remove China from the sample and accordingly redefine all six types of products. The numbers of LMH, MH and H products now follow similar trends over time and are almost equally important in the first and last year of the sample. From 1972 to 1994 there is no
evidence of a steady upward trend for LMH products and no evidence of a steady downward
trend for MH and H products. It is important to point out that to be consistent with the Heckscher-
Ohlin framework China must be included in the analysis as a low-wage exporting country. We
exclude China from the sample in our analysis as a way of looking into the importance of China
in shaping across-product specialization in world trade. 7

China’s increasing ability to penetrate the U.S. market in products that high-wage countries
also export is seen in trade data from Brazil, India and Japan. Figures 2A and 2B clearly show
that removing China from the sample substantially reduces the share of LMH and increases the
share of MH and H products imported by Brazil. We also see from Figures 3A and 3B that this is
exactly the case for Indian imports. While declining over time the share of H products remains
noticeably important for both Brazil and India in 2004. When China is excluded the share of H
products remains the most important component of Brazilian imports for the whole 1989-2004
period. Since Brazil and India are representative middle-wage country and low-wage the evidence
shows that across-product specialization is present. *It is only for Japanese imports that the trend
toward greater within-product specialization remains graphically strong independently of the
presence of China in the sample.*

Turning now to investigate which groups of countries are major actors of within-product
specialization in LMH products, Table 1 presents the average number of low-wage, middle-wage
and high-wage exporters in a LMH product and the breakdown of the value of LMH imports.
Columns 1, 3 and 4 show that for all four countries the average number of low-wage countries in
an LMH product is much smaller than that of middle-wage and especially high-wage countries.
For example, a LMH product is on average exported to the U.S. market by 2.3 low-wage, 4.6
middle-wage and 10.5 high-wage countries in 1972. Also, in 1992 the average number of high-
wage exporters of an LMH product imported by Brazil, India and Japan is approximately 2 to 4

7 Rodrik (2006) and Schott (2007) both show that Chinese patterns of exports are “special” given China’s
status as a low-wage and labor-abundant exporting country.
times higher than the average number of low-wage exporters. More importantly, column 2 shows that the presence of high-wage exporters in LMH products increases over time while that of low-wage exporters remains essentially the same when China is excluded. In 1994 a LMH product is on average imported by the United States from 2.1 low-wage, 4.9 middle-wage and 14.1 high-wage countries. Also, the number of high-wage exporters of a LMH product imported by Brazil, India, and Japan increases to 7.7, 8.2, and 9.3 in 2004, respectively.

Columns 5, 7 and 8 of Table 1 also show that high-wage countries export a much larger share of the value of LMH products to the United States than the group of low-wage countries. In 1972, for example, 7%, 26% and 67% of the total value of exports of LMH products to the United States originated from low-wage, middle-wage, and high-wage countries, respectively. The same numbers are 11%, 14% and 75% in 1994. The share of low-wage country exports in LMH imports by Japan exhibits the highest increase: from 18 % in 1992 to 37 % in 2004. Yet, this increase is due to Chinese exports. Column 6 shows that when China is excluded the share of low-wage countries in the value of LMH products imported by Japan drops to 9.0 % in 2004, just 3 percentage points higher than the share in 1992. In sum, our analysis above shows that it is China and high-wage countries that are the major players in the trend towards greater within-product specialization.

III. Conclusion

This paper provides an empirical analysis of multiple sourcing (i.e., across-product specialization) in the imports of the United States, Brazil, India and Japan. We find that the phenomenon of increasing multiple sourcing, as documented by Schott (2004), applies to the imports not only of the United States but also of Brazil, India and Japan. Our analysis shows that two important features characterize this phenomenon. First, China is the dominant low-wage exporter of multiple-sources products imported by the United States, Brazil, India and Japan. Second, it is China and the high-wage countries that are the driving forces of increasing multiple sourcing in imports of all those four countries.
These findings are of independent interest and deepen our understanding of the data underlying Schott’s results. What they mean for Schott’s conclusions is not entirely clear. First, Schott’s most important finding – about the role of factor endowments for within-product specialization – also holds for Brazil, India and Japan. Thus, we are only reporting on his across-product specialization finding. Second, it is unclear conceptually what it means to remove China. Had China not entered the global economy would other low-wage countries have taken up the slack in a way that would reduce across-product specialization? Such a complex general equilibrium counterfactual is beyond the scope of this paper.

References

Table 1: Presence of Countries and their Share in LMH Products by Importer

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Countries</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Low*</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>U.S. Import Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>2.3</td>
<td>1.6</td>
</tr>
<tr>
<td>1982</td>
<td>2.8</td>
<td>1.9</td>
</tr>
<tr>
<td>1994</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Brazilian Import Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1998</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>2004</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Indian Import Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>1998</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>2004</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Japanese Import Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>1998</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>2004</td>
<td>2.6</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Notes: (1) * denotes the average number of low-wage in a LMH product and the share of low-wage countries of the total value of LMH products when China in excluded from the sample.
Figure 1: Shares of U.S. Imported Products by Source

A: China is included
B: China is not included

Figure 2: Shares of Brazilian Imported Products by Source

A: China is included
B: China is not included
Figure 3: Shares of Indian Imported Products by Source

A: China is included

B: China is not included

Figure 4: Shares of Japanese Imported Products by Source

A: China is included

B: China is not included