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Abstract

Most empirical evidence suggests that the efficient futures market hypothesis, hence-

forth referred to as EFMH, stating that spot and futures prices should cointegrate with

a unit slope on futures prices, does not hold, a finding at odds with many theoretical

models. This paper argues that these results can be attributed in part to the low power

of univariate tests, and that the use of panel data can generate more powerful tests. The

current paper can be seen as a step in this direction. In particular, a newly developed

factor analytical approach is employed, which is very general and, in addition, free of

the otherwise so common incidental parameters bias in the presence of fixed effects. The

approach is applied to a large panel covering 17 commodities between March 1991 and

August 2012. The evidence suggests that the EFMH cannot be rejected once the panel

evidence has been taken into account.

JEL Classification: C12; C13; C33; C36.

Keywords: Dynamic panel data models; Unit root; Factor analytical method; Efficient

market hypothesis; Futures markets.

1 Introduction

The efficient market hypothesis (EMH) is based on the principle that asset prices reflect all

publicly available information. Under the joint assumptions of risk neutrality and rational-
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ity, the expected returns to speculative activity in an efficient market should be zero. Thus,

in a futures market, the current price of an asset for delivery at a specified date should be

an unbiased predictor of the future spot rate. This is the efficient futures market hypothesis

(EFMH). Despite the wide acceptance of this hypothesis in theory, however, the postulated

long-run one-for-one relationship between spot and futures prices has proven very difficult

to verify empirically. In fact, most studies tend to reject the EFMH (see Westerlund and

Narayan, 2013, and the references provided therein).

A typical test of the EFMH involves taking the difference between the current spot price

and past futures price (in logs), which is then subjected to a unit root test. The EFMH re-

quires that the current spot price and past futures price are cointegrated with cointegrating

vector (1,−1)′, which is tantamount to requiring that the difference between the two vari-

ables is stationary. There are basically two ways in which the weak evidence in favor of

the EFMH (and also of the EMH) can be explained. One way is to take the empirical re-

sults for granted and modify the theoretical arguments. Fama (1970) argues that tests of the

EMH are actually joint tests of market efficiency and the model of market equilibrium. There

are two commonly accepted theories of commodity futures prices. These are the theory of

storage, and the theory that futures prices consist of the expected future spot prices and an

expected risk premium. Fama and French (1987) clarify that while the theory of storage is

not controversial, there is little agreement on whether futures prices contain expected pre-

miums. Persistent deviations between spot and future prices could therefore be due to the

presence of such premiums (see Barkoulas et al., 2003, for a detailed discussion). The sec-

ond explanation involves taking the theoretical arguments as given and instead focus on the

econometric approach. In particular, it has been argued that the lack evidence in favor of the

EFMH (and also of the EMH) can be attributed (at least partly) to the low power of the unit

root test methodology employed (see, for example, Fama and French, 1987; Summers, 1986).

This issue is discussed to some extent in Peroni and McNown (1998), who propose using

more “informative” tests that are robust to possible endogeneity. However, as pointed out

by Westerlund and Narayan (2013) such robustness corrections, while leading to tests with

better size properties, are known to be quite costly in terms of power. Hence, accounting for

endogeneity does not bring any more power into the analysis. As an alternative approach,

Westerlund and Narayan (2013) suggest accounting for the information contained in the

conditional heteroskedasticity of the data, which is shown, both analytically and via Monte
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Carlo simulation, to lead to tests with higher power than that achievable using conventional

tests that ignore this information (see also Westerlund and Narayan, 2012, 2014).

One drawback with the approach developed by Westerlund and Narayan (2013) is that

it assumes that the time-variation is in the conditional variance only, which need not be

the case in practice. Indeed, Pagan and Schwert (1990), Loretan and Phillips (1994), Wat-

son (1999), and Busetti and Taylor (2003), to mention a few, all provide strong evidence

against the conditional homoskedasticity assumption for most financial variables, including

exchange rates, interest rates and stock returns. Hence, there is a need for procedures that are

general enough to accommodate not only conditional but also unconditional heteroskedas-

ticity.

Another source of information that is almost always there but is always ignored is that

contained in the multiplicity of contracts/commodities usually considered (see, for example,

Peroni and McNown, 1998; Westerlund and Narayan, 2013; Shawky et al., 2003). Put differ-

ently, while the data usually have a panel structure with multiple cross-section units, the

econometric approach employed is a time series one, in which the testing is carried out in a

unit-by-unity fashion. This means that when one unit is tested, the information contained in

the other units is ignored. This is wasteful. Indeed, as is well-known, spot and futures prices

tend to be highly correlated across contracts/commodities (see, for example, Barkoulas et

al., 2003). Hence, ideally one would like to have a testing approach that takes full account

not only of the unconditional heteroskedasticity, but also of the panel structure of the data.

Such a strategy is likely to be more powerful, and thus more successful in evidencing the

EFMH.

In this paper, we make an attempt in this direction by employing a dynamic panel ap-

proach, drawing upon a large data set covering 17 commodities over the March 1991–August

2012 period. In so doing, we pay special attention to the many features that characterize this

type of financial data. For example, in addition to unconditional heteroskedasticity, given

the high degree of dependence/heterogeneity that exists across both time and commodities,

time- and commodity-specific fixed effects would seem to be necessary. Unfortunately, when

taken together these considerations invalidate the use of most existing dynamic panel data

approaches. The only exception known to us is the factor analytical (FA) approach of Bai

(2013). As far as we are aware, this is the first application of FA and also one of the very first

studies in the futures literature to consider a dynamic panel data approach to the EFMH. In

3



fact, the only other dynamic panel data study known to us is that of Bernoth and von Hagen

(2004), who consider the impact of the European central bank’s policy announcements on

the EFMH within the Euribor futures market.

The rest of the paper is organized as follows. Section 2 discusses the dynamic panel

data model considered and puts it into context. The estimation of this model is discussed

in Section 3. Section 4 reports the results from a small Monte Carlo simulation study. The

empirical results are contained in Section 5. Section 6 concludes.

2 Model discussion

Consider the panel data variable yi,t, observable for t = 1, ..., T time series and i = 1, ..., N

cross-sectional units. In the empirical part, we consider four specifications of yi,t, which are

all designed to infer the EFMH by testing the joint hypothesis that spot and futures prices

are cointegrated with cointegrating vector (1,−1)′. For example, in our first specification,

denoted S1, yi,t is the log difference between the current spot and past futures prices. The

following baseline dynamic panel data model can be seen as the kernel of all four specifica-

tions:

yi,t = µi + δt + ρyi,t−1 + β′xi,t−1 + ε i,t, (1)

where µi and δt are unit- and time-specific fixed effects, respectively, xi,t−1 is a vector of

predetermined regressors, and ε i,t is an error term that is assumed to be time and cross-

section independent with E(ε i,t) = 0, E(ε2
i,t) = σ2

t > 0 and E(ε4
i,t) < ∞.

Under the additional assumptions that |ρ| < 1 and σ2
t = σ2 (1) represents what can only

be described as the “classical” dynamic panel data model with unit-specific fixed effects,

which has attracted considerable attention in the econometric literature. A major reason for

this is the existence of the well-known incidental parameters bias, which arises because of an

increasing number of fixed effects. In the micro panel setting with T small and N large this

bias is rather devastating, as in this case ordinary least squares (OLS) is even inconsistent,

which has in turn led to the development of alternative estimators. Prominent among these

alternative estimators is generalized method of moments (GMM) (see, for example, Arellano

and Bond, 1991; Arellano and Bover, 1995), which is now the most common approach in

practical empirical work with dynamic panels. However, as noted by Blundell and Bond

(1998), these estimators suffer from a weak instrument problem when ρ approaches unity,

4



and when ρ = 1 the moment conditions are completely irrelevant. Allowing T to be large

lessens the problem of bias; however, the asymptotic distributions of most known estimators

are still miscentered, causing deceptive inference (see Moon et al., 2013a, Section 3.1.3).

The above discussion supposes that σ2
t = σ2. If in addition σ2

t is unrestricted, then the es-

timation problem becomes even more complicated. In particular, unlike in standard regres-

sion analysis where heteroskedasticity is often a matter of efficiency rather than consistency,

in dynamic panel data models omitted heteroskedasticity leads to inconsistency (see Bai,

2013). Also, while here we assume that ε i,t is cross-section homoskedastic, this is not neces-

sary. Indeed, as Bai (2013) points out, if ε i,t is both time and cross-section heteroskedastic,

then σ2
t simply represents the time-t cross-section average variance.

The above issue of bias recently motivated Bai (2013) to propose FA as an approach to

the estimation of (1). The name stems from the fact that the estimator, which is based on

quasi-maximum likelihood (quasi-ML), coincides with the one used in factor analysis (see,

for example, Anderson and Amemiya, 1988). A key feature of FA is that it does not re-

quire estimation of the fixed effects themselves, but only estimation of the variance of µi,

Sµ = ∑N
i=1(µi − µ)2/(N − 1), where µ = ∑N

i=1 µi/N. Since this is just a scalar the incidental

parameter problem caused by the fixed effects is effectively removed, leading to an estimator

that is completely bias-free. It is also instrumentation-free, which means that the difficulties

associated with weak instruments and instrument proliferation in case of GMM do not arise.

Bai (2013) focuses on the classical setup with |ρ| < 1. This is enough in many applica-

tions; however, in the present case it is important to be able to allow also unit root behavior

(ρ = 1). For example, if yi,t is the difference between the current spot price and past futures

price, then ρ = 1 corresponds to a failure of the EFMH, and we do not want to assume a pri-

ori that the EFMH holds (|ρ| < 1). Fortunately, as Westerlund and Norkute (2014) show, FA

can be extended to cover also the unit root case. Hence, in this study, the only requirement

is that ρ ∈ (−1, 1].

3 FA

Suppose for simplicity that β = 0, such that the predetermined regressors are absent from

(1). It is useful to write the resulting model in matrix form, and for this purpose we need

the following T × 1 vectors: yi = (yi,1, ..., yi,T)
′, ε i = (ε i,1, ..., ε i,T)

′, δ = (δ1, ..., δT)
′ and 1T =
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(1, ..., 1)′. The following matrices are also needed:

L =


0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

 , Γ =


1 0 0 . . . 0
ρ 1 0 . . . 0
ρ2 ρ 1 . . . 0
...

. . . . . . . . .
...

ρT−1 . . . ρ2 ρ 1

 ,

which are both T × T. Note how L and Γ can be seen as “lag” and “accumulation” matrices,

respectively; the t-th row of Lyi and Γyi are given by yi,t−1 and ∑t
n=1 ρn−1yi,n, respectively. In

this notation,

yi = 1Tµi + δ + ρLyi + ε i, (2)

which can be solved for yi, giving

yi = Γ1Tµi + Γδ + Γε i, (3)

where Γ is related to ρ and L via Γ = (IT − ρL)−1. This is the model considered in Bai (2013).

However, he assumes that |ρ| < 1, which we have already argued need not be the case in

practice, especially not the case of the EFMH. A complicating factor of allowing ρ = 1 is that

the meaning of µi and δ changes. This is easily appreciated by considering the t-th row of yi;

yi,t = µit +
t

∑
n=1

δn +
t

∑
n=1

ε i,n.

Hence, what under |ρ| < 1 represent unit-specific fixed effects (µ1, ..., µN) are under ρ = 1

unit specific trend slopes. Therefore, in order to prevent such changes in the meaning of the

model parameters, in what follows we consider the following modified version of (2):

yi = Γ−11Tµi + Γ−1δ + ρLyi + ε i, (4)

such that

yi = 1Tµi + δ + Γε i. (5)

The premultiplication of Γ−1 is under ρ = 1 tantamount to first-differencing, which removes

the accumulation that occurs under ρ = 1. The model in (4) can be seen as emanating

from the following components model, which is very common in the unit root literature (see

Schmidt and Phillips, 1992; Westerlund and Breitung, 2013, for discussions): yi = 1Tµi + δ +

si, where si = ρLsi + ε i.
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We now describe the FA estimator of (4). The parameter vector of interest is given by

θ = (Sµ, ρ, σ2
1 , ..., σ2

T)
′. Note how δ is not included. The reason for this is that since we are

not really interested in making inference regarding this parameter vector anyways, we can

remove it by taking differences from the cross-section average; yi − y = 1T(µi − µ) + Γ(ε i −

ε), where y = ∑N
i=1 yi/N with similar definitions of µ and ε. Let Sy = ∑N

i=1(yi − y)(yi −

y)′/(N − 1), which is T × T. Under the assumptions placed on ε i,t, it is not difficult to show

that

E(Sy) = Σ(θ) = 1T1′TSµ + ΓΦΓ′−11T1′−1′
T Sµ + Φ)Γ′. (6)

where Φ = diag(σ2
1 , ..., σ2

T) is T × T and Sµ is as in Section 2. The model in (5) can be seen as

a common factor model with factor 1T and loading µi, suggesting that the estimation can be

carried out using methods designed for such models. This motivated Bai (2013) to consider

the following “discrepancy function”:

Q(θ) = log(|Σ(θ)|) + tr (SyΣ(θ)−1), (7)

which is often used in classical factor analysis (see, for example, Anderson and Amemiya,

1988). The FA estimator θ̂ of θ is the minimizer of Q(θ). Hence, viewing Q(θ) as a distance

measure between Sy and Σ(θ), θ̂ is essentially a moment matching estimator based on the

variance of yi − y. This is important because while the mean of yi − y obviously depends

on µ1, ..., µN , the variance only depends on Sµ, which has the same dimension regardless of

the value taken by N. Hence, unlike estimators based on the mean, such as OLS, in FA the

unit-specific fixed effects are not incidental parameters. Of course, the same cannot be said

about the error variances, σ2
1 , ..., σ2

T, which obviously increase in number as T increases. For-

tunately, as Bai (2013) shows, the estimation of these variances do not lead to an incidental

parameters bias.

While Bai (2013) focuses on the model in (2), under |ρ| < 1 the modification in (4) does

not affect the results. Let us therefore denote by ρ̂FA the FA estimator of ρ. As Bai (2013)

shows, as N, T → ∞ with N/T3 → 0, provided that |ρ| < 1,

√
NT(ρ̂FA − ρ) →d N(0, 1/γ), (8)

where →d signifies convergence in distribution and

γ = lim
T→∞

1
T

T

∑
t=2

t−1

∑
n=1

ρ2(t−n−1)σ−2
t σ2

n
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Hence, in contrast to most existing estimators, with FA there is no asymptotic bias. The

estimator is even efficient. Note also that under homoskedasticity, γ = 1/(1 − ρ2), which is

the same as for the OLS fixed effects estimator (see Hahn and Kuersteiner, 2002). In fact, the

same is true even for the time series OLS estimator. The difference is the rate of consistency,

which in the times series case is only
√

T ≤
√

NT for all N ≥ 1. Hence, since in this paper

N is assumed to be large, the panel FA and OLS estimators are infinitely more efficient than

times series OLS. In Section 4 we use Monte Carlo simulation to elaborate on this issue.

The result in (8) requires that |ρ| < 1. If ρ = 1, the above results change. Westerlund

and Norkute (2014) only consider the case with homoskedasticity; however, their results can

be easily extended to cover also the present more general setting. The relevant asymptotic

distribution is given in Theorem 1.

Theorem 1. Under ρ = 1 and the conditions laid out in the above, as N, T → ∞ with N/T2 → 0,
√

NT(ρ̂FA − ρ) →d N(0, T/γ).

Proof: The proof of Theorem 1 follows by simple manipulations of the proof of Theorem 3

in Westerlund and Norkute (2014). It is therefore omitted. �

The main difference between (8) and the result given in Theorem 1 is the rate of conver-

gence, which is higher in Theorem 1. This is due to the fact that in this case yi,t has a unit

root and therefore the estimator of ρ is “superconsistent”, as is to be expected given the large

literature on non-stationary panels (see Breitung and Pesaran, 2008; Baltagi, 2008, Chapter

12, for surveys). The value of ρ is therefore easier to discern if ρ = 1 than if |ρ| < 1. Another

difference is the condition placed on the relative expansion rate of N and T, which is rela-

tively stronger in Theorem 1. The reason for this is again the unit root property of the data,

which leads to increased variance. The assumption that N/T2 → 0 prevents this variance

from having a dominating effect. In practice this means that T2 > N, which is not very re-

strictive. In our data set, N = 17 and T = 258, suggesting that N/T2 = 17/66 564 ≈ 0.0003,

which is a very small number indeed.

The second thing to note about Theorem 1 is that the variance has exactly the same form

as in (8), except for the scaling by T, which is due to the increased rate of consistency under

ρ = 1. In particular, note how under homoskedasticity, γ/T reduces to

1
T

γ = lim
T→∞

1
T2

T

∑
t=2

(t − 1) =
1
2

,
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which implies that the variance of
√

NT(ρ̂FA − ρ) is given by T/γ = 2, which is again the

same as for OLS without fixed effects (see, for example, Levin and Lin, 1992, Theorem 3.2).

In the present case with fixed effects the variance of the OLS estimator of ρ is 51/5 ≈ 10 > 2

(see Hahn and Kuersteiner, 2002). Hence, the use of FA leads to a quite substantial reduction

in variance when compared to OLS. Another difference is that, in contrast to FA, OLS is

biased. Indeed, as Hahn and Kuersteiner (2002) show,

√
NT(ρ̂OLS − ρ) + 3

√
N →d N(0, 51/5),

where ρ̂OLS is the fixed effects OLS estimator of ρ. This result suggests that without bias

correction, the OLS estimator is actually only T-consistent, which is the same rate as for the

times series estimator.

The fact that the FA estimator is not only unbiased but also supports asymptotically

normal inference for all values of ρ, including unity, makes it unique. In fact, the only other

estimator with this property is the GMM estimator of Phillips and Han (2010). However, in

contrast to FA, which is
√

NT-consistent, in the unit root case the estimator of Phillips and

Han (2010) is only
√

NT-consistent. FA is therefore superior in this regard.

4 Monte Carlo study

A small-scale Monte Carlo simulation exercise was carried out to demonstrate the advantage

of using FA when compared to more conventional pooled and time series (unit-by-unit) OLS.

The data generating process is given by a simplified version of (4) that sets µi ∼ U(−1, 1).

Time series OLS can accommodate fixed effects that are unit-specific, but not fixed effects

that are time-specific, which is just another way of saying that it is unable to explore the

common variation in the data. In applications to spot and futures price data such variation

is likely to be the rule rather than the exception, and in this section we therefore consider

δt ∼ U(−1, 1).1 The allowance of heteroskedasticity is extremely time consuming and in

fact not possible unless one is considering a single sample. In this section, we therefore

assume that ε i,t ∼ N(0, 1). In Section 5 we show how to implement the FA estimator in the

presence of heteroskedasticity.

A large number of results were produced; however, in interest of space we focus on

1We also considered the case when δ1 = ... = δT = 0. However, since the conclusions were not affected by
this, in the paper we focus on the more realistic case when time effects are present.
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the bias, absolute bias and root mean squared error (RMSE) of ρ̂FA, and the size and size-

adjusted of a nominal 5% level t-test when the hypothesis is formulated as H0 : ρ = 1. The

number of replications is set to 1,000. The data set that we consider in the empirical part has

N = 17 and T = 258, and we also consider subsamples with T = 67 and T = 191. In view of

this, in the simulations we set N ∈ {10, 20} and T ∈ {50, 100, 200}. All computational work

was done in GAUSS 11. In implementing FA we used the BFGS algorithm for constrained

optimization with non-negativity constraints on estimated variances. The standard errors

are obtained from the inverse of the Hessian matrix evaluated at the estimated parameters.

The results of the time series OLS estimator are averaged over the cross-section.

The results are reported in Table 1. The first thing to note is that the bias is generally

much smaller for FA than for OLS. In fact, the pooled (time series) OLS bias can be as large

as 200 (300) times the corresponding FA bias, and it is never smaller than eight (14) times the

FA bias. The difference in RMSE is less dramatic; however, it is still sizable, especially when

ρ = 1, in which case the RMSE of pooled (time series) OLS is never smaller than six (11)

times that of FA. The RMSE of all three estimators should be decreasing in T; however, it is

only for FA and pooled OLS that RMSE should decreasing also in N. The results reported in

Table 1 are quite suggestive of this. We also see that the RMSE is generally lower when ρ = 1

than when |ρ| < 1, which is a reflection of the relatively high rate of consistency in this case.

There is a big difference in size accuracy with the OLS-based t-tests exhibiting substantial

distortions and FA having the best size accuracy by far. There is also a huge difference in

terms of (size-adjusted) power with FA being uniformly more powerful then the OLS-based

tests.

All-in-all, we find that the FA estimator leads to a substantial improvement when com-

pared to both pooled and time series OLS. Since such differences are likely to be very impor-

tant in practice in the empirical part we will only consider FA.2

2Some of the specifications considered in the empirical part include predetermined regressors. We therefore
generated simulation results also for such models. The results were, however, almost identical to those reported
in Table 1. We therefore omit them.
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5 Empirical results

5.1 Data

Our empirical analysis is based on the following 17 commodities: soybeans, wheat, corn,

cocoa, silver, soybean meal, copper, coffee, sugar, soybean oil, platinum, palladium, gold,

cotton, canola, (west Texas intermediate) crude oil, and natural gas. The data are monthly

and span the period March 1991 to August 2012. We also consider sub-samples, motivated

by the global financial crisis: the pre-crisis sample covers the period from March 1991 to Jan-

uary 2007, while the post-crisis sample covers February 2007–August 2012 period. The full

sample period has a total of T = 258 observations, while for the pre- and post-crisis samples

we have 191 and 67 time series observations, respectively. All data are downloaded from

the Commodity Research Bureau database. Both spot and futures prices are transformed by

taking logs.

5.2 Preliminary results

Before we report the results from applying the FA approach we examine the extent of cross-

section dependence and heteroskedasticity in the data.

In order to infer the significance of the cross-section correlation problem, we compute the

pair-wise correlation coefficients of the spot and futures data. In particular, to gauge against

possible unit roots the correlations are based on the first-differenced rather than the level

data. The simple average of these correlations across all pairs of commodities, together with

the associated CD test discussed in Pesaran et al. (2008), are given in Table 2. The average

correlation coefficient ranges between 0.21 and 0.23, and the CD statistic is highly significant

for both variables, which we take as strong evidence of cross-section dependence. In view

of this, in the implementation of FA we will focus on the specification with common time

effects included. To illustrate the impact of allowing for common time effects, Table 2 also

reports some results based on the cross-section demeaned first-differenced data. As we can

see, while the CD test is still significant, the average correlation is substantially reduced by

the demeaning, from about 0.2 to about −0.05.

As a second preliminary we examine the extent of time series heteroskedasticity in the

data. In Figure 1 we plot the cross-section variance of the first-differenced spot and futures

prices for each point in time, where the first-differencing is again performed to gauge against
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possible unit roots. The first thing to note is that the variance is clearly not constant and that

there are clusters of high/low variance observations. We also see that the variance profiles

of the two variables are very similar. In fact, most of the time the two lines are almost on

top of each other. In order to formally test the hypothesis of variance constancy we apply

the partial sum of squares Q-statistic considered by, for example, Perron (2006). The test

values for the spot and futures variables are 2.13 and 2.74, respectively. The appropriate right

tail critical value at the conservative 1% level is 0.74, suggesting that the null hypothesis of

constant variance can be easily rejected for both variables. Hence, as expected, the presence

of heteroskedasticity cannot be ignored.

Figure 1: Cross-section variances for each point in time.
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Note: The cross-section variances are for the first-differenced spot and futures prices.

The above results are relevant not only for the implementation of FA, but also for what

they imply for the results reported in existing studies. Bernoth and von Hagen (2004) em-

ploy data on spot and multiple futures prices to test the EFMH in the Euribor market. They

consider a dynamic panel data model that is similar to (1) but without common time ef-

fects, which is estimated by OLS with panel-corrected standard errors. However, while ro-

bust against cross-section dependence, the standard errors cannot handle heteroskedasticity
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over time and they are unsuitable in general for use in dynamic models (see Kristensen and

Wawro, 2003). One reason for this is the incidental parameters bias caused by the unit-

specific effects, a problem that is made worse by taking ρ closer to unity (see Moon et al.,

2013). The FA approach considered here accounts for heteroskedasticity and is unbiased for

all ρ ∈ (−1, 1]. It is therefore expected to lead to more reliable results.

5.3 Main results

Having considered briefly the heteroskedasticity and cross-section correlation properties of

the data, we now turn to the test for predictability. Since both features seem important in

this section we focus on the model considered in Sections 2 and 3 that allows both common

time effects and heteroskedasticity, although results for the time series homoskedastic and

unit-specific effects-only model are also reported for comparison. Denote by si,t and fi,t the

time-t log spot and futures prices, respectively. The particular model specifications that we

will consider are as follows:

S1. yi,t = si,t − fi,t−1 and β = 0;

S2. yi,t = si,t − fi,t and β = 0;

S3. yi,t = ∆si,t, ρ = 0 and xi,t−1 = si,t−1 − fi,t−1;

S4. yi,t = ∆si,t, ρ = 0 and xi,t−1 = [(si,t−1 − fi,t−2), ∆ fi,t−1]
′.

As mentioned in Section 1, the EFMH implies that si,t and fi,t−1 should be cointegrated

with a unit slope on the latter variable. S1–S2 are designed to test the null hypothesis of no

cointegration versus the alternative of cointegration. In S1, which can be seen as a unit root

test regression for si,t − fi,t−1, this is done by testing ρ = 1 versus |ρ| < 1. As Zivot (2000)

points out, if si,t and fi,t−1 are cointegrated, then si,t and fi,t should be cointegrated too.

The purpose of S2 is to test this. S3 and S4 are error-correction models, so the appropriate

restriction to test here is that the coefficient on si,t−1 − fi,t−1 and/or si,t−1 − fi,t−2 is zero. As

with S1 and S2, S3 and S4 are very similar and are in fact equivalent representations. Hence,

if there is error-correction in S3, then there should be error-correction also in S4, and vice

versa.

Specifications S1–S4 are estimated while adjusting the discrepancy function in (7) accord-

ingly (see Bai, 2013, for details). As in Bai (2013) the discrepancy function is made conditional
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on the initial observation, yi,0. By doing so, we obtain an estimator that is robust to arbitrary

initializations, which is a great advantage, as we have little or no priors regarding the initial

values of spot and futures prices. The fixed-effects and the regressors in xi,t−1 are correlated.

To control for this we apply the Mundlak–Chamberlain projection. In our case, T is relatively

large, which makes it possible to use a relatively simple version of the projection where the

fixed-effects are projected on the regressors averaged over time (rather than on each time

period; see Bai 2013). The numerical optimization of the objective function is carried out

exactly as described previously in Section 4.

The results are reported in Table 3. We begin by considering the full-sample results for

S1 and S2. We see that while the estimates of ρ are quite high, especially for S2, they are

still far from one. This observation is supported by the reported t-statistics for the unit

root restriction (ρ = 1), which are all highly significant, suggesting that in these cases yi,t is

persistent but still mean reverting. This means we cannot reject that si,t and fi,t or fi,t−1 are

cointegrated with cointegrating vector (1,−1)′, which we take as evidence in favor of the

EFMH.

Consider next the (full-sample) results reported for S3 and S4. The estimated coefficients

for si,t−1 − fi,t−1 and si,t−1 − fi,t−2 are well above zero and very similar in magnitude, as to

be expected. The t-statistics for these coefficients are significant, but only marginally, at the

5% level or better for S4 and at the 10% for S3. Hence, while not as overwhelming as for S1

and S2, the evidence for S3 and S4 is still in favor of error-correction and hence of the EFMH.

According to theory, under the EFMH the fixed effects should all be zero. As a by-product

of the FA procedure, we obtain estimates of the variance of the fixed effects, Sµ. These are

very close to zero for all specifications considered and in fact never go above 0.001. In order

to infer also the mean we computed the averages of the OLS fixed effects estimates. As

expected, the averages were very close to zero, which we interpret as evidence in favor of

the EFMH. This finding is in agreement with the results of Bernoth and von Hagen (2004)

for the Euribor market.

The subsample results are generally in agreement with the overall conclusion for the full

sample, that is, the evidence tends to favor of the EFMH. One important difference is the

estimated coefficients which differ quite markedly across the two subsamples. In particular,

while for S1 and S2 the estimated coefficients are relatively larger in the post-crisis subsam-

ple, for S3 and S4 it is the other way around, that is, the estimates are larger in the pre-crisis

14



Figure 2: Estimated variances for S1 at each point in time.
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subsample. While this could be taken as a sign of model instability, we argue that it should

not. In particular, as is well-known, the serial correlation properties of a stationary variable

subject to structural change are akin to those of a random walk, and therefore tests for a unit

root tend to have poor power against alternatives that are breaking but otherwise stationary.

Hence, if the relationship had indeed undergone a structural change as a consequence of the

global financial crisis, then the full sample tests should have rejected cointegration/error-

correction, which is not what we observe. The observed differences are therefore more likely

to be due to sample variation and/or the smallness of T, especially in the post-break sub-

sample.

In order to infer the effect of common time effects and heteroskedasticity over time, Table

4 reports results obtained by assuming that these features are absent. The main result here

is that while the coefficient estimates are very similar to those obtained in the presence of

heteroskedasticity and common time effects, the standard errors are now much larger. The

effect of this is to overturn the previous conclusions. That is, while the evidence under

heteroskedasticity and common time effects tend to favor cointegration/error-correction, if

these features are ignored, then the evidence goes in the other direction. This illustrates the
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importance of accounting for heteroskedasticity and time effects, which we have seen are

present in the data. To get a feeling for the extent of the heteroskedasticity in the regression

errors, Figure 2 plots as an example the estimated variances for S1. Consistent with the

evidence reported in Figure 1 we see that the variance is not constant.

The above results are based on the model in (4). As explained in Section 3, the difference

between this model and the one in (2) is that under ρ = 1 the fixed effects are restricted in

(4) but not in (2). But this is the only difference. Indeed, under |ρ| < 1, the two models

are indistinguishable. This fact can be used as a robustness check of the above findings; the

EFMH holds, then the results obtained by fitting (2) should be very similar to those obtained

by fitting (4). Our unreported results confirm this. In fact, the results are almost identical.

The largest difference (in percentage terms) is obtained for S1 where the estimate of ρ is

reduced from 0.244 to 0.210, which in absolute terms is really quite marginal.

6 Conclusion

This paper is about testing whether commodity markets satisfy the EFMH. The thrust of the

paper is the econometric approach used to test this hypothesis, which is different from the

otherwise so common time series unit root and cointegration approaches. In particular, a

dynamic panel data approach is proposed. The advantage of such a panel approach, which

seems to have gone largely unnoticed in the futures markets literature, is the increased num-

ber of observations that can be brought to bear on the EFMH. This is expected to lead to tests

with higher precision when compared to more conventional time series tests, a result that is

verified using Monte Carlo simulation. However, the particular panel approach considered

here, which is based on the recently proposed FA estimator of Bai (2013), is superior not only

when compared to time series approaches, but also when compared against existing panel

approaches. Indeed, while existing panel data estimators are known to suffer from bias due

to heteroskedasticity and heterogeneity, FA is completely bias-free. It is also unique in that

it supports asymptotically normal inference for all values of ρ, including unity. This last fea-

ture of FA is particularly important when testing the EFMH, because if the hypothesis fails

then the difference between the spot and futures prices is expected to follow a random walk

(provided that spot and futures prices are themselves random walk processes). In view of

these advantages, it is not surprising that when FA is applied to a panel of 17 commodities,
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we find strong support for the EFMH.
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Table 2: Cross-correlation test results.

Variable Time effects? Correlation CD p-value

Spot prices No 0.214 40.138 0.000
Futures prices No 0.230 43.118 0.000
Spot prices Yes −0.049 −9.163 0.000
Futures prices Yes −0.053 −10.004 0.000

Notes: “CD” refers to the Pesaran et al. (2008) test of the null hypothesis
of no cross-section correlation. The reported correlations are the average
of the pair-wise correlation coefficients. The spot and futures prices have
transformed by taking first differences.

Table 3: Estimation results.

Specification Coefficient Estimate SE t(0) p-value t(1) p-value
Full sample

S1 ρ 0.210 0.044 4.737 0.000 −17.803 0.000
S2 ρ 0.701 0.099 7.044 0.000 −3.008 0.003
S3 β 0.199 0.111 1.802 0.072 −7.246 0.000
S4 β1 0.197 0.078 2.507 0.012 −10.239 0.000

β2 0.223 0.091 2.439 0.015 −8.518 0.000
Pre-crisis subsample

S1 ρ 0.193 0.031 6.234 0.000 −25.995 0.000
S2 ρ 0.702 0.075 9.322 0.000 −3.963 0.000
S3 β 0.232 0.059 3.905 0.000 −12.933 0.000
S4 β1 0.205 0.060 3.414 0.001 −13.240 0.000

β2 0.196 0.068 2.859 0.004 −11.762 0.000
Post-crisis subsample

S1 ρ 0.364 0.030 11.942 0.000 −20.872 0.000
S2 ρ 0.878 0.017 52.294 0.000 −7.297 0.000
S3 β 0.118 0.043 2.750 0.006 −20.606 0.000
S4 β1 0.115 0.043 2.700 0.007 −20.705 0.000

β2 0.193 0.050 3.851 0.000 −16.127 0.000

Notes: “SE” refers to the estimated standard error. “t(0)” and “t(1)” refer to the t-statistics
for testing the null hypothesis that the true coefficient is equal to zero and one, respectively.
β1 and β1 are the coefficients of si,t−1 − fi,t−2 and ∆ fi,t−1, respectively.
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Table 4: Estimation results under the assumption of time-homoskedastic errors and no time
effects.

Specification Coefficient Estimate SE t(0) p-value t(1) p-value

S1 ρ 0.199 0.144 1.382 0.167 −5.566 0.000
S2 ρ 0.822 0.216 3.806 0.000 −0.823 0.410
S3 β 0.213 0.272 0.784 0.433 −2.896 0.004
S4 β1 0.209 0.258 0.811 0.417 −3.067 0.002

β2 0.215 0.283 0.760 0.447 −2.779 0.005

Notes: See Table 3 for an explanation.

23


	201412
	milda2_21may2014

