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A GARCH Model for Testing Market Efficiency 

ABSTRACT 

In this paper we propose a generalised autoregressive conditional heteroskedasticity 

(GARCH) model-based test for a unit root. The model allows for two endogenous structural 

breaks. We test for unit roots in 156 US stocks listed on the NYSE over the period 1980 to 

2007. We find that the unit root null hypothesis is rejected in 40% of the stocks, and only in 

four out of the nine sectors the null is rejected for over 50% of stocks. We conclude with an 

economic significance analysis, showing that mostly stocks with mean reverting prices tend 

to outperform stocks with non-stationary prices. 

 

Keywords: Efficient Market Hypothesis; GARCH; Unit Root; Structural Break; Stock Price.  
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1. INTRODUCTION 

The efficient market hypothesis (EMH) is one of the traditional hypotheses in 

financial economics, owing to the work of Samuelson (1965) who proposed that stock prices 

should follow a random walk. The implication of Samuelson’s proposal was that stock 

returns should be entirely unpredictable due to investors’ arbitrage motives.   

Three forms of the EMH are popularly tested in the literature. The weak form version 

of the EMH is based on an information set that uses current or past asset prices (see Fama, 

1970). Fama (1991) argued that the weak form EMH should also include in the information 

set those predictor variables, such as dividend yields and interest rates, which forecast 

returns. When this information set is expanded to include all public information, the EMH 

takes a semi-strong form. Finally, if all public and private information is contained in the 

information set, the EMH takes the strong form (see Fama, 1970, 1991). Our test for the 

EMH is based on the weak form version as it is based on the idea that current price of stocks 

is the best predictor of the future price of stocks, and the price change (return) is expected to 

be zero. This implies a random walk model where increments are identically and 

independently distributed. When errors from a predictive model are heteroskedastic, a 

martingale allows for uncorrelated increments. A martingale can be considered as a 

generalised form of a random walk model. Therefore, a martingale model is ideal when data 

on hand, such as stock price data, is best characterised by heteroskedasticity (see Kim and 

Shamsuddin, 2008).  

The EMH has attracted a substantial interest, with voluminous empirical applications. 

Our interest on the EMH is based on two specific reasons. The first reason is that despite the 

plethora of studies on the EMH, none of the studies have examined the hypothesis at the 

micro level; that is, for time series of stock prices at the firm level. In other words, all 

empirical applications are either on aggregate stock prices (indices) or on cross-section of 

stocks. This is the main research gap in the extant literature. The motivation for a micro-level 

test of the EMH is explained in the next section. The second reason is methodological, in 

that, in financial economics, it has been shown that financial data suffers from 

heteroskedasticity. It is, therefore, important to account for heteroskedasticity. A second 

issue with time series data, well established in the time series applied econometrics literature, 

is that data tends to be characterized by structural breaks. Hence, we model both 

heteroskedasticity and structural breaks simultaneously.  

To test for the unit root null hypothesis, following the Nelson and Plosser (1982) 

findings, a wide range of structural break unit root tests have been developed. These tests can 
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be categorized into those that treat the structural breaks as exogenous and those that treat the 

structural breaks as endogenous. The exogenous break tests include those proposed by Perron 

(1989), while the endogenous class of tests include those from Lumsdaine and Papell (1997), 

Lee and Strazizich (2003), Sen (2003), Perron and Vogelsand (1992), and more recently 

Narayan and Popp (2010). A key feature of these tests is that they are based on linear models, 

i.e. they assume independent and identically distributed (iid) errors. Fittingly, Kim and 

Schmidt (1993a) show that the Dickey-Fuller type tests tend to reject the unit root null 

hypothesis too often in the presence of conditional heteroskedasticity.1 

The aim of this paper is to examine the EMH for US stocks. We consider, from the 

New York Stock Exchange, no fewer than 156 stocks. The data series are monthly and cover 

the period January 1980 to December 2007. Such a historical time series analysis of the 

efficient market hypothesis for a large number of stocks has not been previously undertaken. 

The second contribution, motivated by the limiting theory for unit root processes with 

GARCH disturbances developed by Ling and Li (1998, 2003), Seo (1999) and Gospodinov 

(2008), is that we propose a GARCH (1,1) unit root model that is flexible to accommodate 

two endogenous structural breaks.  

We also undertake an economic significance analysis through which we demonstrate 

the relative importance of unit root properties for investors. Generally speaking, there is 

limited knowledge on how beneficial the knowledge on unit roots is for investors. 

The balance of the paper is organized as follows. In section 2, we describe the 

literature on the EMH and derive the main motivations for our study. In section 3, we present 

the econometric model and discuss the results. In section 4, we undertake an economic 

significance analysis followed by a robustness test. In the final section, we provide some 

concluding remarks. 

 

2. LITERATURE AND MOTIVATION 

There are two motivations for the current paper. The first motivation is empirical and 

has roots in the literature that has tested the EMH. The literature on the EMH has followed 

two strands. The first strand (see, inter alia, DeBondt and Thaler, 1985, 1987; Zarowin, 1990) 

relates to the early literature on this subject and is based on a panel data –a cross-section of 

stocks—analysis. These studies essentially test the return reversal behaviour of stock prices. 

This amounts to testing whether the prior period’s worst stock return performers (losers) 

1 The relevance of unit roots in financial time series and panel data have been demonstrated by many 
studies; one influential study that motivates us is Geppert et al., (2002). 
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outperformed the prior period’s best return performers (winners) in the subsequent period. 

These studies can be considered as short-horizon based analysis of the EMH. The second 

strand of the literature considers the EMH over long horizons based on time series data (see, 

inter alia, Fama and French, 1988; Poterba and Summers, 1988; Richards, 1995, 1997; 

Chaudhuri and Wu, 2003; Zhong et al., 2003) or panel data (see Balvers et al. 2000); for a 

nonlinear mean reversion of stock prices, see Bali et al. (2008).  

There are three distinctive features of this literature. First, there is no consensus on 

mean reversion. Some studies have found mean reversion, while others have rejected the 

mean reversion hypothesis.  The more recent studies on mean reversion in stock prices, such 

as Balvers et al. (2000) based on panel data and Chaudhuri and Wu (2003) based on time 

series structural break unit root tests, find overwhelming evidence of mean reversion, 

however. The second feature is that, while a range of applications on mean reversion in stock 

prices are available, none of the studies have considered mean reversion in individual firm 

stock prices based on time series data. The third feature is that a wide range of econometric 

estimation techniques, ranging from simple cross-sectional regression models to 

sophisticated structural break unit root testing procedures have been applied, but none of the 

studies have considered a GARCH-based model. This is particularly important in light of the 

fact that high frequency data, such as daily and monthly, suffer from heteroskedasticity and 

a GARCH model solves this statistical problem, which if unsolved can potentially bias the 

results on mean reversion; see Engle (1982) and Bollerslev (1986). 

From these features of the literature, the one gap that is obvious is: there are no studies 

that examine the EMH at the firm-level using time series data. In other words, no studies 

examine the validity or otherwise of the EMH for firm-level stock price. Why is this 

investigation important?  The aggregate stock price based studies on the EMH assume that 

firms comprising the aggregate stock market are homogenous. It is, however, not the case. 

Firms are heterogeneous (see Narayan and Sharma, 2011). Firms are of different sizes and 

cost structures.  Hence, some firms, or the heterogeneity of firms, may be contributing to the 

results on the EMH. For these two reasons, it is essential to test the EMH for each stock 

individually. As a result, we consider the unit root null hypothesis for 156 US stocks. 

Moreover, we divide these stocks into different sectors based on the Global Industry 

Classification Standard (GICS).  

The second motivation is methodological in nature. In addition to financial time series 

data being characterized by GARCH errors,  structural breaks are a stylized fact of financial 

time series, as demonstrated in the work of Andreou and Ghysels (2002), among others. The 
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role of structural breaks and the fact that they contribute to volatility persistence has been 

highlighted in the work of Diebold (1986). Following this suggestion, an initial attempt at 

allowing the constant term of the conditional variance to change was made by Lamoureux 

and Susmel (1994). 

As highlighted earlier, studies on structural break unit root tests are based on standard 

linear models, i.e. with iid innovations. This assumption is inappropriate for modeling unit 

roots if there is heteroskedasticity. Following this, some studies (see, inter alia, Phillips and 

Durlauf, 1986; Phillips, 1987; Chan and Wei, 1988; Kim and Schmidt, 1993b; Lucas, 1995; 

Herce, 1996; Seo, 1999; Ling and Li, 2003) consider testing for unit roots with non-iid errors. 

We extend this branch of research to include two endogenous structural breaks based on a 

GARCH (1,1) process. Our extension is relevant in the case of testing the EMH based on 

monthly data because Kim and Schmidt (1993a) show that the Dickey and Fuller test is 

sensitive to heteroskedasticity and the problem is compounded when the ARCH and GARCH 

parameters together approach unity. Ling et al. (2003) argue that the phenomena can be, to 

some extent, explained by the loss of efficiency of the least squares estimator. To give 

credence to this line of thought, Ling and Li (1998) derive the limiting distribution of the 

maximum likelihood estimator for higher order GARCH errors and prove that it was more 

efficient compared to the least square estimator. In the work of Seo (1999), in addition, it is 

shown that when the unit root test is based on the maximum likelihood estimation, which 

estimates the autoregressive unit root and the GARCH parameters jointly, significant power 

gains are achieved.  

Based on this literature, we propose a model that not only allows for two endogenous 

structural breaks but also jointly estimates the autoregressive (AR) and the GARCH 

parameters based on the maximum likelihood estimator. Essentially, we merge two branches 

of the literature—the endogenous structural break literature and the literature on efficient 

estimators for unit root tests—to arrive at a model that is novel for unit root testing. It follows 

that our proposed GARCH (1,1)-unit root test model with two endogenous structural breaks 

is characterized by the salient features of the broader literature on unit roots.  

 

3.  ECONOMETRIC MODEL AND EMPIRICAL FINDINGS 

3.1.  Data 

The data on stock prices of the US firms is from the New York Stock Exchange, 

obtained from BLOOMBERG. The data is monthly and for the period 1980 to 2007. The 

stocks are divided into nine sectors based on the GICS following Narayan and Sharma 
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(2011). These sectors are utilities, materials, information technology, industrial, health care, 

financial, energy, consumer staples, and consumer discretion. The number of firms in each 

sector varies, from as low as eight in the case of the info tech sector to as high as 31 in the 

case of the industrial sector. The complete distribution of firms by sector is noted in Table 1.  

INSERT TABLE 1 

3.2. Some descriptive statistics of the data 

In this section, we provide some stylized facts about the data series. The results are 

reported in Table 1. The key features of the data are as follows. First, we notice that mean 

stock price varies from sector-to-sector. Returns (not reported here) follow a similar pattern. 

It falls in the 0.5 to 1.04% range. Three sectors (utilities, infor tech, and energy) have a mean 

return of around 0.5%; for four sectors (health, financial, consumer staples and consumer 

discretion) returns are either one or close to one; and the rest of the sectors have a mean return 

in the 0.7 to 0.85% range. Second, in terms of volatility, the coefficient of variation (CoV) 

suggests that some sectors are relatively more volatile than others. For instance, the consumer 

staples, financial, and health care sectors are the most volatile while utility and energy sectors 

appear to be least volatile. Third, the kurtosis statistic suggests that all sectors are platykurtic, 

except for the energy sector for which prices have a much thicker tail. Finally, one can 

observe a similar sectoral pattern with respect to skewness. While skewness is positive across 

all sectors, the magnitude varies and falls in the 0.23 (utilities) to 1.64 (energy) range. 
 

The implication emerging from this simple statistical analysis is that the behavior of 

firms is different depending on their sectoral location, which is a well-known fact in financial 

economics. Our main reason for demonstrating this here is to motivate our categorization of 

stocks into sectors.  

 

3.3. GARCH-unit root test with two endogenous structural breaks 

3.3.1.  Model specification 

In this section, we propose a GARCH-unit root test with two endogenous structural breaks. 

Before we proceed with model description, it is important to address the question: why are 

two structural breaks sufficient? To answer this question, we draw on the Bai and Perron 

(1998) procedure which allows us to examine the maximum number of breaks for each of 

the 156 stocks in our sample. Bai and Perron (1998) suggest an F-test statistic and a double 

maximum statistic to identify the maximum number of breaks in the data series. The F-test 

statistic considers the null hypothesis of no structural break against the alternative hypothesis 
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that there are 𝑘𝑘 breaks. Essentially, this test amounts to searching for all possible break dates 

and minimizing the difference between the restricted and unrestricted sum of squares over 

all the potential breaks. The double maximum test examines the null hypothesis of no 

structural breaks against the alternative hypothesis of at least one through to 𝑘𝑘 structural 

breaks. There are two forms of the double maximum statistic: 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 statistic, which is the 

maximum value of the F-statistic, and the 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 statistic, which weights the individual 

statistics so as to equalize the p-values across the values of structural breaks. Using both test 

statistics, we find that for 138 out of 156 stocks (88.4%) in our sample, there are a maximum 

of two structural breaks, while for the remaining stocks there is only one structural break. 

Based on this evidence, a two break model is sufficient. 

We consider a GARCH (1, 1) unit root model of the following form: 

                                 𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝜋𝜋𝑦𝑦𝑡𝑡−1 + 𝐷𝐷1𝐵𝐵1𝑡𝑡 + 𝐷𝐷2𝐵𝐵2𝑡𝑡 + 𝜀𝜀𝑡𝑡                 (1) 

Here, α0 being the constant, and yt-1 is the one lag of the dependent variable y.   𝐵𝐵𝑖𝑖𝑖𝑖 =

1 for 𝑡𝑡 ≥ 𝑇𝑇𝐵𝐵𝐵𝐵  otherwise 𝐵𝐵𝑖𝑖𝑖𝑖 = 0; 𝑇𝑇𝐵𝐵𝐵𝐵 are the structural break points, where 𝑖𝑖 = 1, 2. 𝐷𝐷1 and 

𝐷𝐷2 are break dummy coefficients. Moreover, 𝜀𝜀𝑡𝑡  follow the first-order generalized 

autoregressive conditional heteroskedasticity model, denoted as GARCH (1, 1), 

                                 𝜀𝜀𝑡𝑡 = 𝜂𝜂𝑡𝑡�ℎ𝑡𝑡 ,   ℎ𝑡𝑡 = 𝜘𝜘 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽ℎ𝑡𝑡−1                   (2) 

Here ϰ > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0,  and 𝜂𝜂𝑡𝑡  is a sequence of independently and identically 

distributed random variables with zero mean and unit variance. 
 

3.3.2. Simulation design 

In this section, we evaluate the size and power properties of the two endogenous 

structural GARCH-unit root test, as described in Equations (1) and (2). 

We consider different break locations in the range of 0.2 to 0.8 with various GARCH 

[α, β] combinations, where α and β are the ARCH and GARCH parameters, respectively. 

There are various approaches to estimating the equation, such as demonstrated by Ling et al. 

(2003), which is: first estimate 𝜋𝜋  by least squares, and then obtain a series of artificial 

observations of the residual, 𝜀𝜀𝑡𝑡, which is then used to estimate the coefficients of the variance 

equation (𝜘𝜘, 𝛼𝛼, 𝛽𝛽) by using the Fortran Numerical Libraries of IMSL subroutine DBCOAH. 

We adopt the joint maximum likelihood (ML) estimation approach proposed by Seo (1999); 

that is, the unit root hypothesis is examined via the ML t-ratio forπ . Since the break time is 

unknown, 𝑇𝑇𝐵𝐵𝐵𝐵 (𝑖𝑖 = 1, 2)  in Equations (1) and (2) has to be replaced by their estimates 𝑇𝑇�𝐵𝐵𝐵𝐵. 
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We conduct the estimation by using a sequential procedure;2 that is, we search for the first 

break date according to the maximum absolute t-value of the break dummy coefficient 

𝐷𝐷1,  i.e., 𝑡𝑡𝐷𝐷�1 .  Hence we obtain: 

𝑇𝑇�𝐵𝐵1 = arg max
𝑇𝑇�𝐵𝐵1.

�𝑡𝑡𝐷𝐷�1 ( 𝑇𝑇𝐵𝐵1 )�                                          (3) 

Imposing the first break estimate 𝑇𝑇�𝐵𝐵1 , we estimate the second break date 𝑇𝑇�𝐵𝐵2 such 

that  

𝑇𝑇�𝐵𝐵2 =  arg max
𝑇𝑇�𝐵𝐵2.

�𝑡𝑡𝐷𝐷�2 �𝑇𝑇�𝐵𝐵1 , 𝑇𝑇𝐵𝐵2 ��                                   (4) 

 

3.3.3. Critical values 

The critical values are based on 50,000 replications and are generated for sample sizes 

of N = 150, N = 250, and N = 500. The break fractions considered are (0.2, 0.4), (0.2, 0.6), 

(0.2, 0.8), (0.4, 0.6), (0.4, 0.8), and (0.6, 0.8). We have computed critical values at the 1% 

and 5% levels for both cases of known break dates (exogenous case) and unknown break 

dates (endogenous case). To conserve space, we only report the endogenous case with critical 

values at the 5% level. 

INSERT TABLES 2 

Some observations for the critical values are in order. First, we notice that the critical 

values do not vary much with changing the GARCH parameters regardless of the different 

structural break combinations. Second, we observe that the distribution of the finite sample 

critical value converges to the traditional Dickey-Fuller distribution as the sample size 

increases. For instance, the 5% critical value moves closer to the Dickey-Fuller critical value 

of -2.87 when the sample size increases to 500. We also observe that the finite sample 

distribution further shifts leftwards when the GARCH parameter decreases, such as from 0.9 

to 0.05.   

The results for the empirical size are reported in Table 3. The properties are reported 

for various break sizes and sample sizes. The break sizes we use are (1, 1), (3, 3) and (5, 5), 

while the sample size ranges from 150 observations to 500 observations. Due to the space 

2 We also applied a simultaneous grid search procedure; that is, for each potential break date combination 
(𝑇𝑇𝐵𝐵1, 𝑇𝑇𝐵𝐵2), we selected the break dates according to the maximised F-statistic of the joint significance of both 
break dummy coefficients. The results of the sequential and simultaneous procedures do not differ much; 
hence, we adopt the sequential procedure since it is a relatively less time consuming exercise.  
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limitations, we only present the case for two break points of (0.2, 0.6). The results for other 

scenarios are qualitatively similar and are available upon request. The size properties are then 

estimated for two different combinations of the ARCH and GARCH parameter values, 

namely [0.05, 0.9] and [0.2, 0.75].  

INSERT TABLE 3 

Two features of the results are worth highlighting. The first feature is that when the 

GARCH parameter values are chosen so as to have a higher degree of persistence—a key 

feature of financial markets—for a small sample size (such as when N=150), the empirical 

size is greater than the nominal 5% level. This implies that our proposed test of GARCH unit 

root is oversized in small sample sizes. By contrast in large sample sizes (such as when 

N=500), the test converges to the nominal 5% level. This is true irrespective of GARCH 

orders. This implies that our test performs well in large sample sizes.  

The second feature of the size results is that when the break parameters increase, 

regardless of the GARCH orders, in large sample sizes, the empirical size is correctly sized 

at 5%. That large sample size is a feature of financial data applications implies that our 

proposed model will work well when subjected to data where the sample size is large. 

In Table 3, we also report the frequency of detecting the break dates. First we 

demonstrate the case of the model exactly detecting break points (0.2, 0.6), which, when N 

= 150, amounts to the 30th and 90th observations. We notice the significant improvement with 

increasing the break magnitude, i.e., (5, 5). In Table 4, we consider the power of the model. 

Essentially, we compare the GARCH two breaks model with a GARCH model without any 

structural breaks. We find that the GARCH model with two structural breaks is significantly 

powerful for larger sample size. We also find the power increases to almost 1 with higher 

break magnitudes. 

INSERT TABLE 4 

3.4.4. Is there mean reversion in stock prices? 

In this section, we apply our proposed GARCH (1, 1) model with two structural 

breaks to test the EMH for 156 US stocks listed on the NYSE. We reject the null hypothesis 

for no less than 63 stocks; for 38 stocks at the 5% level of significance and for 25 stocks at 

the 10% level of significance (see Table 5). This implies that for 63 stocks (40%), there is 

evidence of mean reversion whereas for the remaining 60% of stocks, stock prices are non-

stationary. 

10 
 



When we consider stocks by sectors, the number (and %) of rejections of the null 

vary from sector-to-sector. In some sectors, the null is rejected only for 16% of stocks 

(utilities and materials) while for the consumer discretion sector we reject the null for a large 

number (76%) of stocks. There are three sectors (energy, finance, and consumer staples) for 

which the null is only rejected for around 30% of stocks. On the other hand, for info tech, 

industrial, and health care sectors’ the null is rejected for 50-58% of stocks.  

INSERT TABLE 5 
 

There are three messages emerging from our results. First, we find limited evidence 

of the “stock market overreaction” hypothesis, which posits that stock prices temporarily 

overreact by moving away from their fundamental values in response to news. DeBondt and 

Thaler (1985, 1987) were amongst the first to show this behaviour in stock prices; see also 

Kaul and Nimalendran (1990) and Shefrin and Statman (1985). However, the DeBondt and 

Thaler analysis was challenged by Conrad and Kaul (1993), who argued that there was no 

evidence of market overreaction.  

Another hypothesis proposed to explain possible reversion of prices owes to Basu 

(1977), who contends that stocks with low price-earnings ratios are likely to be temporarily 

undervalued because investors become pessimistic following a series of bad news. However, 

as future earnings improve relative to the gloomy forecasts, the price reverts and adjustment 

takes place. Similarly, for stocks with high price-earnings ratios, equity is overvalued—in 

this case, a downward adjustment in price takes place. Basu (1977) called this the ‘price-

ratio’ hypothesis.  

A contrarian stock selection hypothesis, proposed by Chan (1988), argues for a 

strategy whereby stocks that have been losers are purchased and short stocks that have been 

winners are sold. This strategy is motivated by the premise that stock markets overreact to 

news. It follows that winners are overvalued while losers are undervalued. This ensures that 

an investor who exploits this situation gains when stock prices adjust to their fundamental 

value. 

A tax-motivated trading hypothesis was proposed by Branch (1977). Jegadeesh 

(1991) finds empirical evidence that stock price mean reversion was concentrated in the 

month of January, prompting him to conclude that there is year-end tax-motivated trading on 

the NYSE. He argued for the possibility of a large number of securities exposed to 

concentrated year-end tax-loss selling following prolonged periods of market decline. 

  Our findings, taken on the whole, reveal mixed evidence of the stock market 

overreaction hypothesis, the price-ratio hypothesis, the contrarian stock selection hypothesis, 
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and the tax-motivated trading hypothesis for 156 US stocks over the period 1980 to 2007. In 

total, for only 63 out of 156 stocks there is evidence of mean reversion.  Moreover, in terms 

of sectors in only four (consumer discretion, info tech, industrial, and health care) of the nine 

sectors more than 50% of stocks have mean reverting prices. 

Second, contrary to the voluminous literature, alluded to earlier, which has found 

aggregate stock prices to be mean reverting processes, our findings at the individual firm 

level are completely the opposite. When we consider mean reversion in stock prices for 156 

US firms, we find that for 60% of stocks there is no evidence of mean reversion. Shleifer and 

Vishny (1997) show how the existence of specialized arbitrageurs, who invest capital of 

outside investors and where investors use arbitrageurs’ performance as a guide for 

investment, may not be fully effective in reverting security prices to fundamental values. Our 

findings also seem to associate closely with the proposal put forward by De Long et al. 

(1990)—the noise trading hypothesis. Although the hypothesis explains channels through 

which price adjustment can take place, their model also shows how stock prices can 

potentially diverge from their fundamentals. In their model, noise trading risk is a cost that 

the firm must bear and both traded equity and traded long-term debt will be underpriced 

relative to fundamentals if their prices are subject to the whims of noise traders’ opinion. 

Moreover, De Long et al. (1990) argue that as long as arbitrageurs have short horizons and 

are concerned about liquidating their investment in a mispriced asset they will be less 

aggressive even though they do not face fundamental risk. In such a situation, De Long et al. 

(1990) hypothesise that noise trading can lead to a large divergence between market prices 

and fundamental values. 

 

4. ECONOMIC SIGNIFICANCE 

In this section our goal is to demonstrate how the knowledge on stationarity and non-

stationarity of stock prices provides different expected returns to investors. Moreover, we 

demonstrate how different investment strategies perform when investors incorporate the 

integrational properties of stock prices in devising investment strategies. To achieve the goal 

of this section, we closely follow the procedure recommended by Balvers et al. (2000) for 

undertaking an economic significance analysis of stock prices when their integrational 

properties vary. The key difference between the Balvers et al. (2000) approach and ours is 

that we implement their proposed panel test within a time series framework. We group stocks 

into stationary and non-stationary categories based on our unit root test results. This means 

that for each of the sectors we create two groups of stocks; one that contains only the 
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stationary price stocks and the other that contains stocks with non-stationary price. Just to 

demonstrate this further, let us consider stocks of the financial sector. There are four stocks 

in this sector with stationary prices, which belongs to one group, while the remaining eight 

stocks have a non-stationary price, which belongs to the second group. 

Our first strategy (Strategy 1) is based on a rolling-window approach. We take the in-

sample period of 14 years (January 1980 to December 1993) and estimate model (1). We 

then use the parameter estimates to calculate the expected return for each stock at time 𝑡𝑡0 +

1, and invest 100% of the portfolio in the stock with the highest expected return. At time 

𝑡𝑡0 + 2 (for the rest of the sample; that is, for the out-of-sample period), the estimation is 

conducted with one more observation and the portfolio is switched to the stock with the 

highest expected return. We impose transaction costs of 0.1% which is paid when switching 

to another stock. This process is repeated for the entire out-of-sample period until December 

2007. The expected returns obtained for each group of stocks is called “maximum return” 

(MaR). Similarly, we define “minimum returns” (MiR) as a strategy that invests 100% of the 

portfolio in the stock with the lowest expected return. It follows that MaR less MiR gives us 

an excess payoff from the zero net investment per dollar invested in the MaR portfolio. 

Essentially, this strategy implies buying the MaR portfolio and shorting the MiR portfolio. 

Following Balvers et al. (2000), we also compute the average of the three stocks with the 

highest expected return (MaR_3) and the average of the three stocks with the lowest expected 

returns (MiR_3). 

A conventional benchmark strategy in most economic significance analysis is the 

buy-and-hold strategy. As in Balvers et al. (2000), we apply the geometric average buy-and-

hold strategy.  

The results are reported in Table 6. There a number of features of our results. First, 

upon comparing the expected returns across sectors we find that the rolling estimation 

approach outperforms the buy-and-hold strategy. In other words, the rolling window-based 

strategy for both stocks with stationary and non-stationary prices outperforms the expected 

returns from the buy-and-hold strategy. We also report the Sharpe ratio (SR) for stationary 

and non-stationary stocks by sector. The SR reveals the attractiveness of the rolling 

estimation strategy over the buy-and-hold strategy.  

INSERT TABLE 6 

Second, if we compare the performance of stationary firms with non-stationary firms, 

across all sectors, we make the following observations. The rolling regression-based strategy 

suggests higher expected returns from stocks with stationary stock prices in five sectors, 
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namely, utilities, materials, info tech, energy, and consumer discretion, while in the other 

four sectors returns from non-stationary price stocks are higher than those from stationary 

price stocks.  The SR results are consistent with the trend in returns. 

Based on MaR, most of the stationary price stocks have returns around the 3-3.4% 

range; the only exceptions are stocks of utilities and materials where returns are 2% and 

1.6%, respectively. By comparison, returns for non-stationary stocks are between 1.3-1.5% 

in the cases of utilities and materials; around 2.5-3% for rest sectors; except with 3.2% for 

the financial sectors.  

In our final test of economic significance, we compute investor utility when the 

investor incorporates the information from unit root tests. In other words, we compute 

investor utility for firms with mean reverting stock prices and non-stationary stock prices. 

We do this for all sectors. Although there are debates on the mean-variance theory, including 

most recent ones, Levy and Levy (2013), and Simaan (2013), we apply the parsimonious 

approach to compute the investor utility (U) as follows:  

                                                          𝑈𝑈 = 𝜇̂𝜇 −
1
2
𝛾𝛾𝜎𝜎�2                            (5) 

Where 𝜇̂𝜇 and 𝜎𝜎�2 are the sample mean and variance, respectively, over the out-of-

sample period for the return forecasts, and 𝛾𝛾 represents the risk aversion parameter. We 

consider, following Marquering and Verbeek (2004) and Westerlund and Narayan (2012), 𝛾𝛾 

to be 3, 6 and 12, representing low, moderate and high levels of risk aversion, respectively. 

This effectively is a test of the robustness of the utilities. The utility is also referred to as the 

certainty equivalent return or the amount of portfolio management fee that an investor will 

be willing to pay to have access to the additional information available. In our case, the 

additional information refers to the knowledge available from the unit root properties of the 

stock prices. 

The results are reported in Table 7. We find that regardless of the risk aversion 

parameter investor utility based on stationary price stocks is higher than non-stationary price 

stocks for eight of the nine sectors; the only exception is the health care sector. We also notice 

that investor utilities, for both stationary and non-stationary price stocks, vary from sector-

to-sector. For stationary price stocks, for instance, utility (for 𝛾𝛾 = 6) is in the 0.51 (energy) 

to 2.35 (financial) range. For non-stationary price stocks, it is in the 2.16 (health care) to 0.43 

(energy) range. We also observe that energy sector has the lowest utility, followed by utilities 

and materials sectors. The main message of our results is that investors are willing to pay 

different amounts of fees to extract information in predictive regression models depending 
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on whether or not stock prices are mean reverting. Investor preference for paying different 

amounts of fees is also sector-dependent; that is, in some sectors, they are willing to pay 

higher fees (such as investors in financial, consumer discretion, industrial and health sectors) 

whereas in other sectors (such as energy, utility, and materials) investors prefer paying less 

fees. This finding only highlights the importance of the knowledge on the unit root properties 

of stock prices. 

INSERT TABLE 7 

5. ROBUSTNESS TEST 

We undertook some robustness tests to give credence to our findings and conclusions. To 

conserve space, we decided to only provide a brief account of what we did and what we 

found with respect to the robustness test. The detailed results are available upon request. We 

tested the robustness of our results in two ways. First, we were concerned that even though 

our study, given that it is based on time series financial econometric methods, needs historical 

data going as far back in time as possible, it may well suffer from survivorship bias. To test 

this, we filtered all stocks for the period 1990 to 2007. Although from an econometric point 

of view this compromised the time series requirement for our model to work we more than 

doubled the number of stocks. We found evidence of mean reversion for 36% of stocks. We 

also tried with stocks covering the period 2000-2007. In this case, we ended up with close to 

800 stocks. We found that for 45% of stocks there was evidence of mean reversion. 

Therefore, given that with 156 stocks over 1980 to 2007 we found that for 40% of stocks 

there is evidence of mean reversion, we can safely claim that our results are robust and do 

not suffer from survivorship bias. 

Second, we were concerned that by including data for the period after 2007 will bias 

our results by unnecessarily making our test more power given that there is an obvious 

structural break due to the global financial crisis. We re-estimated all results for the period 

1980 to 2011 and found that there is only a slight improvement in power of our test to reject 

the null. More specifically, we found evidence of mean reversion for 46% of stocks as 

opposed to 40% when using data for the period 1980 to 2007. On the basis of these results, 

we can claim that our results and indeed the main conclusions are unaffected even if we used 

more recent data covering the global financial crisis. 
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6. CONCLUDING REMARKS 

In this paper, we revisit a traditional research topic—the efficient market hypothesis 

(EMH)—in financial economics. There are two motivations for doing this. First, we find that 

the existing research on the EMH is based on aggregate stock prices. We argue that because 

of the presence of heterogeneous firms, the results for the aggregate stock price may be 

spurious. To obviate this, we test the EMH at the firm-level using time series data.  

The second motivation is that financial time series data is well- known to suffer from 

heteroskedasticity. Therefore, unit root testing models that do not account for 

heteroskedasticity are likely to suffer from over rejection of the null hypothesis of a unit root. 

To remedy this, we propose a generalized autoregressive heteroskedasticity (GARCH) model 

that not only caters for the GARCH errors but also allows for two endogenous structural 

breaks in the data series.  

We study the size and power properties of the proposed GARCH structural break unit 

root test and find that statistically it performs well. This is, thus, a useful methodological 

addition to the applied finance literature. Using monthly data for 156 US stocks (divided into 

nine sectors) for the period January 1980 to December 2007, we find reasonably good 

although not overwhelming evidence (63 out of 156) of stock price stationarity. However, in 

only four (consumer discretion, info tech, industrial, and health care) of the nine sectors over 

50% of stocks are found to have stationary prices. 

In the final part of our analysis, we undertake an economic significance analysis. We 

find that rolling regression-based strategies for both firms with stationary and non-stationary 

stock prices outperform the expected returns from the buy-and-hold strategy. The rolling 

regression-based strategy suggests higher expected returns from firms with stationary stock 

prices in most sectors but not all. Finally, the investor utility (certainty equivalent return) 

analysis reveals that investors are willing to pay different amount of fees to extract 

information contained in the predictive regression model conditional on whether or not stock 

prices are mean reverting. Equally important, investors prefer certain sectors over other, in 

that they are willing to pay different amounts of fees depending on the sector of investment. 

These are fresh insights on investor behaviour from the point of view of market efficiency.   
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Table 1: Descriptive statistics of daily stock prices 
 
This table reports the descriptive statistics for monthly stock prices for the 156 US stocks 
listed on the New York Stock Exchange for the period January 1980 to December 2007. 
Column 1 contains the nine sectors. These sectors are utilities, materials, information 
technology, industrial, health care, financial, energy, consumer staples, and consumer 
discretion. This is followed by the number of stocks in each sector; mean values and 
coefficient of variation (CoV) are reported in columns 3 and 4; skewness and kurtosis 
statistics are reported in columns 5 and 6; while in the final two columns, we report the 
autocorrelation (AC) coefficients for lags 10 and 20, respectively.  
 
 

  No. of 
stocks mean CoV Skewness Kurtosis AC(10) AC(20) 

Utilities 19 20.259 0.395 0.228 2.459 0.807 0.676 
Materials 15 21.49 0.579 0.529 2.604 0.843 0.731 
Info Tech 8 19.581 0.689 0.955 3.056 0.839 0.692 
Industrial 31 21.455 0.698 0.749 2.569 0.855 0.745 
Health 13 20.013 0.768 0.477 1.638 0.897 0.804 
Financial 12 19.843 0.762 0.632 2.044 0.886 0.776 
Energy 16 20.826 0.506 1.637 6.134 0.734 0.544 
Con. Staples 21 19.449 0.735 0.36 1.684 0.902 0.81 
Cons. Disp. 21 19.173 0.623 0.334 1.765 0.881 0.775 
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Table 2: 5% level critical values for endogenous structural breaks model 
 
This table reports the 5% level critical values for the model with endogenous structural breaks at different sample sizes (N), ranging 
from 150 to 500.  All simulations are conducted based on various GARCH’s parameters [𝛼𝛼, 𝛽𝛽] combinations with different structural 
break locations 𝑇𝑇𝐵𝐵𝐵𝐵 (t = 1, 2) ranging from 0.2 to 0.8. 
 
[𝛼𝛼, 𝛽𝛽] N =150 N =250 N =500 

  0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 

 0.2 -3.8362 -3.8312 -3.8276 -3.7551 -3.7721 -3.7442 -3.6573 -3.6926 -3.6618 

[0.05,   0.90] 0.4  -3.8252 -3.821  -3.7567 -3.7469  -3.6629 -3.6577 

 0.6   -3.8277   -3.7526   -3.6741 

  N =150 N =250 N =500 

  0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 

 0.2 -3.7866 -3.7809 -3.7618 -3.6905 -3.6916 -3.665 -3.6034 -3.592 -3.5838 

[0.45,   0.5] 0.4  -3.7765 -3.7586  -3.6604 -3.6558  -3.5864 -3.5803 

 0.6   -3.7692   -3.6498   -3.6048 

  N =150 N =250 N =500 

  0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 

 0.2 -3.7469 -3.7546 -3.7087 -3.6527 -3.6479 -3.643 -3.5651 -3.5456 -3.5518 

[0.9,   0.05] 0.4  -3.7173 -3.7423  -3.6174 -3.6536  -3.5144 -3.582 

  0.6   -3.7196   -3.6237   -3.5213 
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Table 3: Finite sample size and power 

This table reports the 5% rejection frequency with nominal 5% significance level, and 
the probability of detecting the true break date for one break date combination (0.2, 
0.6).  

      ρ = 1 

 [𝛼𝛼, 𝛽𝛽] Break sizes N rejection rate 
Frequency of detecting break points 

range 
[0.05,   0.9]       TB TB ± 20 

  150 0.0681 0.3106 0.6863 
 (1,   1) 250 0.0601 0.3679 0.7396 
  500 0.0515 0.4423 0.8141 
      
  150 0.0651 0.3505 0.7109 
 (3,   3) 250 0.0602 0.4028 0.782 
  500 0.0511 0.4942 0.8653 
      
  150 0.0606 0.7098 0.9289 
 (5,   5) 250 0.0575 0.7878 0.9656 
  500 0.0541 0.8514 0.9873 

[0.2,   0.75]           
  150 0.0641 0.2908 0.654 
 (1,   1) 250 0.0567 0.3742 0.7027 
  500 0.0525 0.4496 0.7922 
      
  150 0.066 0.3317 0.705 
 (3,   3) 250 0.0608 0.3973 0.7669 
  500 0.0526 0.4862 0.8625 
      
  150 0.5635 0.7381 0.9270 
 (5,   5) 250 0.5287 0.8003 0.9774 
    500 0.5129 0.8705 0.9839 
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Table 4: Empirical power of the two break GARCH unit root model 
 
This table reports the empirical power of the two break GARCH unit root models for 
the break date combination (0.2, 0.6) based on various GARCH’s parameters [𝛼𝛼, 𝛽𝛽] 
combinations. 
 

[0.05, 0.9]  N Power with breaks 
Power without 

breaks 

 

Break sizes    
 150 0.3691 0.1532 

(1, 1) 250 0.6653 0.3137 
 500 0.9826 0.3568 
    
 150 0.7960 0.1540 

(3, 3) 250 0.8629 0.3323 
 500 0.9974 0.3469 
    
 150 0.9535 0.1449 

(5, 5) 250 0.9833 0.2419 
 500 1 0.2785 

 [0.2, 0.75]     
 150 0.4058 0.1475 

 

(1, 1) 250 0.7680 0.3481 
 500 0.9767 0.3586 
    
 150 0.8629 0.1452 

(3, 3) 250 0.9642 0.3602 
 500 1 0.3543 
    
 150 0.9751 02082 

(5, 5) 250 1 0.2866 
  500 1 0.3781 
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Table 5: Results of the two break GARCH unit root model 

This table presents empirical results for stock prices of 156 US stocks listed on the New 
York Stock Exchange. Stocks are categorised into nine sectors; these sectors are 
utilities, materials, information technology, industrial, health care, financial, energy, 
consumer staples, and consumer discretion. The results are based on Equation (1). The 
two structural breaks denoted by TB1 and TB2 are reported together with the t-test 
statistic used to test the null hypothesis of a unit root. ** and * denote significance at 
1% and 5% level respectively.  
 

Panel A: 
Utilities TB1 TB2 t-stat 

Panel C: 
Health 
Care 

TB1 TB2 t-stat 

AEP   30-May-80 29-Apr-83 -1.3514 ABT   31-Jan-89 31-Jan-95 -0.0184 
CNP   31-Jul-84 31-May-89 -4.7249** BAX   30-Dec-94 30-Dec-94 -0.0381 
CMS   31-Aug-82 29-Jun-07 -2.1634 BDX   28-Sep-84 29-Jul-94 -3.453 
ED   30-Apr-80 30-May-80 -2.7695 BMY   31-Aug-94 30-Nov-99 -3.1121 

DTE   31-Aug-88 30-Jun-97 -5.4461** BCR   31-Jan-85 28-Feb-03 -4.2246* 
DUK   29-Jun-84 28-Apr-89 -3.572 LLY   31-Oct-84 31-Aug-94 -5.1467** 
EIX   30-Apr-80 31-Dec-02 -3.3038 HUM   31-Jan-89 30-May-03 -5.0185** 
EXC   31-Oct-90 30-Apr-03 -2.9466 JNJ   30-Apr-80 30-Apr-80 -0.0056 
NEE   31-Aug-94 30-Jun-04 -2.9124 MRK   29-Nov-85 31-Aug-94 -4.9762** 
NI   29-Jan-88 30-Nov-94 -4.1771* PKI   30-Sep-82 30-Jan-98 -5.119** 
NU   30-Nov-81 31-May-06 -3.6206 PFE   31-May-90 29-Apr-94 -4.8376** 
PCG   31-Jan-84 31-May-84 -2.174 THC   31-Dec-81 31-May-82 -3.5887 
PPL   31-Mar-80 31-Jul-80 -0.1674 VAR   30-Oct-92 31-Mar-99 -4.106* 

PGN   28-Sep-90 31-Oct-90 -2.7058 Panel D: 
Finance 

TB1 TB2 t-stat 

PEG   30-Apr-80 30-May-80 -0.0051 AFL   31-Aug-81 30-Sep-81 -2.7701 
SCG   30-Apr-80 31-Jul-80 -0.7485 AXP   29-Apr-94 30-May-03 -4.5787** 
SO   31-Mar-80 29-Aug-80 -0.0033 JPM   31-Mar-80 28-Apr-95 -0.087 
TE   30-Jan-80 30-Apr-89 -0.013 LNC   30-Apr-80 30-Sep-96 -2.4306 

XEL   30-Apr-80 30-May-87 -2.4374 L   31-Aug-82 31-Oct-03 -3.7329* 
Panel B: 

Materials TB1 TB2 t-stat MMC   31-Mar-80 29-Jun-84 -0.0287 

APD   31-Oct-90 31-Aug-06 -2.5107 PNC   31-Jul-87 30-Sep-96 -
10.2971** 

AA   31-Mar-88 28-Apr-95 -3.9972* TRV   31-Mar-80 30-Apr-87 -0.0084 
BLL   31-Mar-00 31-Jul-06 -3.1043 USB   31-Mar-80 31-Jan-95 -0.0225 

BMS   30-May-80 30-Sep-82 -3.2119 VNO   30-Apr-80 30-Nov-07 -1.3194 
CLF   31-Mar-80 30-Jun-03 -1.7849 WFC   31-Oct-01 31-Oct-07 -0.0019 

DOW   29-Nov-85 31-Jan-96 -5.3306** WY   31-Jan-92 30-May-03 -5.7944** 

DD   30-Sep-82 30-Nov-90 -3.5022 
Panel G: 

Consumer 
staples 

TB1 TB2 t-stat 

FMC   31-Jul-86 29-Jul-94 -8.0013** MO   29-Nov-85 30-May-03 -4.2025* 
IFF   31-May-82 31-Jan-89 -3.6201 ADM   30-Sep-82 31-Dec-07 -1.8143 
IP   29-Nov-85 31-Oct-90 -5.8168** AVP   31-Jan-89 28-Apr-95 -3.245 
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NEM   31-Mar-80 29-Aug-86 -5.1289** BEAM   30-Apr-87 30-Sep-87 -1.2867 
NUE   31-Oct-90 30-May-03 -3.3801 CPB   31-Dec-81 31-Aug-88 -3.5826 
PPG   29-Jun-84 30-Nov-90 -4.3001* CLX   30-Nov-81 31-Aug-94 -4.1337* 
SHW   30-Nov-90 30-Nov-99 -0.0187 KO   30-Apr-82 31-Aug-88 -3.829 
VMC   31-Aug-06 29-Jun-07 -1.0587 CL   30-Apr-80 31-Jul-80 -0.9886 

Panel E: 
Info Tech TB1 TB2 t-stat CAG   30-May-80 30-Jan-81 -1.6579 

AMD   31-Aug-92 30-Nov-07 -3.382 CVS   30-Apr-80 29-Feb-96 -4.2796* 
CSC   28-Sep-84 31-Oct-90 -3.529 GIS   31-Jan-89 31-Oct-00 -3.6287 
GLW   31-Mar-80 29-Dec-95 -2.1851 HSY   30-Apr-80 31-Aug-94 -3.5574 
HRS   30-Oct-92 30-May-03 -3.9294* HNZ   31-Mar-80 31-Aug-94 -2.6149 
HPQ   31-Aug-94 30-Jun-05 -4.2974* K   28-Sep-84 31-Oct-90 -4.8336** 
IBM   31-Dec-81 30-Aug-96 -4.4766** KMB   31-May-85 31-Mar-95 -5.133 
TER   30-Jun-93 31-Jul-07 -4.4922** KR   31-Jul-95 28-Feb-06 -4.4382** 
XRX   31-Jan-91 31-Aug-97 -0.0469 PEP   30-Apr-80 28-Feb-85 -2.5725 

Panel F: 
Industrial TB1 TB2 t-stat PG   30-Apr-80 30-Jun-87 -0.0008 

MMM   31-Jan-89 29-Sep-95 -3.7187* SVU   30-Jun-82 30-Apr-03 -4.6505** 
AVY   31-Aug-82 31-Aug-94 -4.6595** WMT   30-Apr-80 31-Jan-97 -5.001 
BA   30-Jun-82 31-Mar-95 -4.1697* WAG   30-Apr-80 30-Nov-94 -3.7623* 

CAT   30-Oct-92 30-May-97 -0.0275 
Panel H: 

Consumer 
dis. 

TB1 TB2 t-stat 

CBE   30-Nov-88 29-Nov-02 -3.9434*  T1 T2 t-stat 

CMI   30-May-03 28-Feb-07 -3.6657 CCL   28-Jun-91 30-Sep-96 -
13.2295** 

DE   31-Dec-92 31-Aug-06 -3.0545 FDO   30-Apr-82 29-Feb-96 -4.7179** 
DOV   31-May-89 31-Jan-95 -4.8232** F   29-Jan-82 31-Mar-00 -3.6366 
ETN   28-Sep-90 30-Nov-90 -1.9533 GCI   30-Dec-94 31-Jul-07 -3.4713 
EMR   30-Apr-80 30-Jun-87 -0.0051 GPS   29-Apr-88 29-Sep-95 -5.0018** 
EFX   29-Jan-82 30-Nov-92 -3.8395* GPC   30-Apr-80 30-Nov-90 -2.9142 
FDX   31-Dec-80 31-Aug-95 -2.9943 GT   29-Jun-90 31-Oct-90 -3.7936* 
GD   29-Mar-91 30-May-03 -3.9729* HRB   31-May-89 29-Dec-00 -3.6631 
GE   30-Sep-88 30-Dec-94 -4.4279** IPG   30-Apr-80 29-Feb-00 -0.0649 
GR   31-Mar-80 28-Apr-95 -2.6412 JCP   29-Nov-85 31-Oct-07 -3.0996 

ITW   30-Sep-82 31-Mar-95 -3.8069* JCI   30-Apr-80 30-Nov-07 -0.6921 
IR   28-Sep-84 31-Jan-96 -2.8989 LEG   28-Sep-90 30-Nov-90 -3.7048* 

MAS   30-Sep-82 31-Jan-95 -4.6506** LEN   30-Nov-90 31-Jul-07 -2.3988 
NOC   31-Mar-95 30-Nov-05 -4.001** LOW   30-Nov-92 31-Oct-97 -4.7852** 
PH   29-Apr-94 29-Apr-98 -0.0334 MCD   31-Jul-02 30-Apr-03 -2.1729 
PBI   26-Feb-82 30-Nov-07 -3.1829 MHP   30-Aug-96 30-Sep-90 -3.1887 
RTN   28-Sep-90 30-Nov-05 -3.7258* NWL   30-Nov-82 31-Dec-87 -4.0658* 

R   28-Feb-85 31-Aug-87 -4.9517** TGT   31-Aug-88 30-Apr-96 -4.4084** 
SNA   29-Nov-85 31-Mar-95 -3.7199* VFC   29-Aug-03 30-Nov-07 -2.5065 
LUV   31-Oct-90 30-May-97 -5.7249** DIS   29-Jun-84 31-Jul-87 -2.8844 
SWK   30-Sep-82 31-Aug-95 -4.1482* WHR   28-Sep-90 30-Nov-99 -4.4547** 

TXT   31-Oct-90 30-May-03 -3.4451     
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TYC   31-May-82 31-Jul-07 -3.053     
UNP   30-Nov-90 29-Jul-05 -4.3143**     
UTX   30-Dec-94 30-May-03 -4.5026**     

GWW   30-May-80 30-Nov-90 -3.6791     
Panel I: 
Energy TB1 TB2 t-stat 

  
TB1 TB2 t-stat 

APA   30-Apr-80 29-May-81 -0.3499 MUR   31-Mar-99 31-Mar-99 -0.0317 
COP   31-Dec-87 30-Sep-03 -3.7881* OXY   30-Apr-80 30-Sep-03 -2.9475 
EQT   30-Apr-80 31-Dec-80 -1.976 RRC   30-Sep-96 27-Feb-98 -1.1405 
XOM   30-Apr-80 30-Apr-87 -0.2146 RDC   30-Jan-81 29-Dec-95 -4.5146** 
HAL   31-Dec-80 31-Aug-95 -3.2303 SLB   31-Dec-80 28-Feb-86 -0.8476 
HP   31-Dec-80 29-Dec-95 -2.7108 SUN   30-Apr-03 30-Sep-05 -0.0942 
HES   31-Dec-07 31-Dec-07 -0.0022 TSO   29-Jun-84 30-Sep-03 -4.6679** 

MRO   31-Jan-91 29-Mar-91 -31.559** WMB   31-Jul-92 31-Jan-95 -4.1612* 
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Table 6: Economic significance analysis 

In this table, we report the economic significance analysis based on a buy-and-hold 
strategy and the rolling window-based strategy. We take the in-sample period of 14 
years (January 1980 to December 1993) of the sample and estimate model (1). We 
then use the parameter estimates to calculate the expected return for each stock at 
time 𝑡𝑡0 + 1, and invest 100% of the portfolio in the stock with the highest expected 
return. At time 𝑡𝑡0 + 2  (for the rest of the sample; that is, for the out-of-sample 
period), the regression is run with one more observation and the portfolio is switched 
to the stock with the highest expected return. This process is repeated for the entire 
out-of-sample period until December 2007. The expected returns obtained for each 
group of stocks is called “maximum return” (MaR). Similarly, we define “minimum 
returns” (MiR) as a strategy that invests 100% of the portfolio in the stock with the 
lowest expected return. It follows that MaR less MiR gives us an excess payoff from 
the zero net investment per dollar invested in the MaR portfolio. Essentially, this 
strategy implies buying the MaR portfolio and selling short the MiR portfolio. 
Following Balvers et al. (2000), we also compute the average of the three stocks with 
the highest expected return (MaR_3) and the average of the three stocks with the 
lowest expected returns (MiR_3). The Sharpe ratio is presented in column 5 and 6.  
 

Strategy Type Mean return Sharpe ratio 
Panel A: Utilities   Util_3_S Util_16_NS Util_3_S Util_16_NS 
1. buy and hold equal-weighted 0.121 0.107 0.514 0.335 
2. rolling 
estimation MaR1 1.978 1.45 2.544 1.051 

 MaR1-MiR1 0.958 0.756 1.078 0.897 
 MaR3 2.327 1.455 1.005 0.799 
 MaR3-MiR3 -0.889 -1.152 -0.401 -0.483 
Panel B: Materials   Mat_6_S Mat_9_NS Mat_6_S Mat_9_NS 
1. buy and hold equal-weighted 0.412 0.399 1.063 0.664 
2. rolling 
estimation MaR1 1.637 1.325 0.085 0.062 

 MaR1-MiR1 0.97 0.725 1.089 1.022 
 MaR3 1.486 1.143 0.135 0.11 
 MaR3-MiR3 0.597 0.512 2.144 1.896 
Panel C: Info Tech   IT_4_S IT_4_NS IT_4_S IT_4_NS 
1. buy and hold equal-weighted 0.897 0.312 0.890 -0.564 
2. rolling 
estimation MaR1 3.055 2.842 3.542 3.005 

 MaR1-MiR1 0.073 0.048 -0.477 -0.459 
 MaR3 3.149 2.955 5.459 5.556 
 MaR3-MiR3 0.08 0.068 -1.231 -1.316 
Panel D: Industrial   Ind_18_S Ind_13_NS Ind_18_S Ind_13_NS 
1. buy and hold equal-weighted 0.686 0.840 0.566 1.616 
2. rolling 
estimation MaR1 3.12 3.143 3.943 4.665 

 MaR1-MiR1 -0.083 -0.243 -0.703 -1.114 
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 MaR3 3. 25 3.21 6.056 6.309 
 MaR3-MiR3 -0.102 -0.125 -1.481 -1.596 
Panel E: Health 
care   Health_7_S Health_6_NS Health_7_S Health_6_NS 

1. buy and hold equal-weighted 0.906 0.727 1.331 0.336 
2. rolling 
estimation MaR1 2.964 3.248 3.034 4.461 

 MaR1-MiR1 -0.137 0.029 -0.553 -0.576 
 MaR3 3.085 3.309 4.909 6.527 
 MaR3-MiR3 -0.098 -0.028 -0.922 -1.228 
Panel F: Financial   Fin_4_S Fin_8_NS Fin_4_S Fin_8_NS 
1. buy and hold equal-weighted 0.746 0.878 0.546 0.968 
2. rolling 
estimation MaR1 3.189 3.134 5.027 3.872 

 MaR1-MiR1 -0.048 -0.158 -0.761 -1.024 
 MaR3 3.26 3.142 6.63 4.868 
 MaR3-MiR3 0.012 -0.105 -2.029 -1.65 
Panel G: Energy   Energy_5_S Energy_11_NS Energy_5_S Energy_11_NS 
1. buy and hold equal-weighted 1.134 1.249 2.635 1.353 
2. rolling 
estimation MaR1 3.356 2.49 2.875 1.983 

 MaR1-MiR1 -0.118 -0.243 0.051 -0.632 
 MaR3 2.827 2.66 2.924 3.3 
 MaR3-MiR3 -0.081 -0.115 1.299 -1.023 
Panel H: Con. 
Staples   CS_10_S CS_11_NS CS_10_S CS_11_NS 

1. buy and hold equal-weighted 0.787 0.711 1.045 0.903 
2. rolling 
estimation MaR1 2.899 3.018 3.4 5.244 

 MaR1-MiR1 -0.35 -0.211 -1.029 -1.257 
 MaR3 3.015 3.116 5.352 7.048 
 MaR3-MiR3 -0.243 -0.13 -1.456 -1.881 
Panel I: Con. Dis.   CD_9_S CD_12_NS CD_9_S CD_12_NS 
1. buy and hold equal-weighted 0.571 0.424 0.079 -0.161 
2. rolling 
estimation MaR1 3.184 2.932 4.516 3.274 

 MaR1-MiR1 0.001 -0.004 -0.719 -0.477 
 MaR3 3.203 3.072 5.831 5.555 
  MaR3-MiR3 -0.025 0.007 -1.301 -0.79 
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Table 7: Investor utility 

This table reports the investor utility based on∶ 𝑈𝑈 = 𝜇̂𝜇 − 1 2⁄ 𝛾𝛾𝜎𝜎�2 , where 𝜇̂𝜇 and 𝜎𝜎�2 
are the sample mean and variance, respectively, over the out-of-sample period for the 
return forecasts, and 𝛾𝛾  represents the risk aversion parameter. “_S” and “_NS” 
represent stationary and non-stationary stock prices, respectively 
 

Panel A: Utility Util_3_S Util_16_NS Panel F: 
Financial Fin_4_S Fin_8_NS 

ϒ = 3 1.401 1.395 ϒ = 3 2.781 2.578 
ϒ = 6 1.063 0.465 ϒ = 6 2.348 1.879 
ϒ = 12 0.014 0.004 ϒ = 12 1.483 0.48 
Panel B: Materials Mat_6_S Mat_9_NS Panel G: Energy Energy_5_S Energy_11_NS 
ϒ = 3 1.388 0.871 ϒ = 3 1.958 1.496 
ϒ = 6 0.857 0.432 ϒ = 6 0.514 0.433 
ϒ = 12 0.106 0.048 ϒ = 12 0.075 0.081 
Panel C: IT IT_4_S IT_4_NS Panel H: Con. St CS_10_S CS_11_NS 
ϒ = 3 2.378 1.971 ϒ = 3 2.304 2.143 
ϒ = 6 1.56 1.052 ϒ = 6 1.558 1.495 
ϒ = 12 -0.076 -0.785 ϒ = 12 0.064 0.097 

Panel D: Industrial Ind_18_S Ind_13_NS Panel I: Con. 
Disc. CD_9_S CD_12_NS 

ϒ = 3 2.578 2.771 ϒ = 3 2.812 2.151 
ϒ = 6 1.911 1.786 ϒ = 6 2.278 1.317 
ϒ = 12 0.576 0.316 ϒ = 12 1.21 -0.352 
Panel E: Health Health_7_S Health_6_NS    
ϒ = 3 2.051 2.734    
ϒ = 6 1.059 2.161    
ϒ = 12 -0.924 1.015       
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