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 (P)ublication bias is leading to a new formulation of Gresham’s law—like bad money, bad research 
drives out good.        – Bland (1988, p. 450) 

 

I. Empirical economics and its publication selection bias  
 

This paper offers a statistical approach to estimating and testing empirical effects in the 

presence of publication selection and simulates its properties under realistic research 

conditions.  Publication bias has long been recognized as another serious threat to 

empirical economics (De Long and Lang, 1992).  More recently, Card and Krueger 

(1995), Ashenfelter et al. (1999), Görg and Strobl (2001), Doucouliagos, Laroche and 

Stanley (2005), Abreu et al. (2005), Doucouliagos (2005),  Nijkamp and Poot (2005) 

Rose and Stanley (2005), and Stanley (2005a) have all used meta-regression analysis 

(MRA) to uncover evidence of publication bias in specific areas of economic research.  

Publication bias, or the ‘file drawer problem,’ is the consequence of choosing research 

papers for the statistical significance of their findings.  ‘Statistically significant’ results 

are often treated more favorably by researchers, reviewers and/or editors; hence, larger, 

more significant, effects are over-represented.  Studies with small, ‘insignificant’ effects 

will tend to remain in the ‘file drawer’ (Rosenthal, 1979).  Publication selection biases a 

literature’s average reported empirical effect away from zero.1 This bias is a problem for 

any summary of empirical research, including narrative literature reviews (Laird and 

Mosteller, 1988, Phillips and Goss, 1995, Sutton et al., 2000a, Stanley, 2001).2   

Econometric estimates can easily be overwhelmed by publication selection 

because there are so many plausible econometric models to choose from.  Conventional 

literature reviews and econometric techniques are powerless to address publication bias.  

If, for example, only half the studies select the results that they report, the average 

                                                           
1 Stanley (2005a) offers a more detailed discussion of publication selection bias and its effects on 
empirical economics. 
2 As an anonymous referee points out, publication bias also makes the interpretation from a 
single study problematic, no matter how well this study is conducted.  The advantage of a 
summary, of course, is that random misspecification and sampling errors are averaged and 
thereby lessened.   
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estimates across a literature and the proportion of studies that find a significant effect will 

be dominated by publication bias, irrespective of the underlying empirical ‘truth.’  Such 

an empirical literature is indistinguishable, by conventional econometric methods, from a 

literature that contains an authentic effect and yet refrains from publication selection.  

Therefore, current econometric methodology cannot reliably assess the empirical merit of 

any economic hypothesis.  Issues of publication selection, its identification and 

circumvention are crucial to a genuinely empirical economics. 

Without some correction for publication bias, a literature that appears to contain a 

large empirical effect offers little, if any, reason for accepting this effect.  At best, 

conventional narrative reviews serve as vote-counts of the number of studies that find a 

significant effect vs. those that do not (Stanley, 2001, pp. 144-6).  When there is no 

authentic effect, but only publication selection, the expected proportion of research 

studies that will report a significant effect is: φ + (1- φ)α ; where φ = the incidence of 

publication selection (i.e., the proportion of studies that choose to report only significant 

effects), and α is a conventional significance level (.05).  Thus, even if a minority of the 

reported effects is the result of selection, the majority of the literature can be expected to 

report a significant effect.  In particular, for a research area with φ > .474 and no actual 

empirical effect, the probability that a majority vote-count comes to the wrong 

conclusion increases with added research.3    

Other areas of social science widely acknowledge the importance of publication 

selection and its associated bias (Sterling, 1959, Rosenthal, 1979, Begg and Berlin, 

1988).  “Many other commentators have addressed the issue of publication bias. . . .  All 

agree that it is a serious problem” (Begg and Berlin, 1988, p.421).  Publication selection 

can make small, practically insignificant effects or random, yet selected, misspecification 

                                                           
3   Use φ + (1- φ)α=.5 to solve for φ.  Similarly, when individual tests have low power, Hedges 
and Oklin (1985) show that the probability that majority vote-counting gives the wrong 
impression increases as research accumulates.   
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biases appear to be an authentic empirical phenomenon.4  At a minimum, the magnitudes 

of the reported effects found in the literature are likely to be exaggerated.  If we are to 

rely on our assessment of the efficacy of a given social program or on the validity of an 

economic theory, it is necessary to have access to methods that correct, test or 

circumvent publication bias.    

This paper offers and evaluates several meta-regression methods for testing 

whether an empirical literature contains reliable evidence of a genuine empirical effect 

beyond potential contamination from publication selection.  Although meta-regression 

methods of publication bias identification have been used in economics (Card and 

Krueger, 1995; Ashenfelter et al., 1999; Görg and Strobl, 2001; Abreu et al., 2005; 

Doucouliagos, 2005; Doucouliagos and Laroche, 2003; Nijkamp and Poot, 2005; Rose 

and Stanley, 2005; Stanley, 2005a), there has been no systematic evaluation of their 

properties.  This study provides evidence that meta-regression analysis can help 

researchers see through the murk of random errors and selected misspecification biases to 

identify and magnify the underlying statistical structure that characterizes genuine 

empirical effects.5  However, if uncorrected, meta-analysis is itself susceptible to the 

distortion of publication selection.  With meta-analysis, at least, statistical methods can 

be employed to identify and/or accommodate publication selection.   

The purpose of this study is to assess the size and the power of several meta-

regression tests for empirical effects, to ‘correct’ the estimated magnitudes for 

publication selection, and to compare the statistical performance of these meta-regression 

methods to Hedges’ (1992) maximum likelihood, publication selection estimator.  The 

central goal is to develop methods that identify the traces of statistical structure 

associated with genuine empirical effects, irrespective of publication selection and 
                                                           
4  This notion of ‘random, yet selected, misspecification biases’ is defined in detail in the 
Appendix.   
5  With publication selection, effects are reported only if they are statistically significant.  When 
insignificant effects are produced, models will be re-specified and re-estimated.  As a result of 
this selection and re-estimation, reported results are likely to be little more than random errors 
and misspecification biases.   
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misspecification bias.  In order to ensure that our empirical inferences are reliable, likely 

sources of error must first be eliminated.  In empirical economics, as well as other areas 

of non-experimental research, published findings are often the result of statistical bias 

(omitted-variables bias or the misspecification of dynamics, functional forms, etc.) 

compounded by publication selection (choosing results that support conventional theory 

or are statistically significant) rather than any authentic underlying phenomenon.  Yet, 

science progresses as the result of severe empirical testing (Mayo, 1996).  To ‘learn from 

error’ requires that we eliminate other plausible sources of our observed effects, ensuring 

that resulting empirical phenomena are more than the artifact of some statistical bias or 

poor experimental design. I do not explicitly address the publication bias that may arise 

from ideological or theoretical commitment.  However, it is unlikely that the MRA 

methods offered here will identify a predilection for a given theory as a genuine effect. 

This study reports Monte Carlo simulations of the small-sample properties of two 

meta-regression tests for identifying genuine effects in the presence of publication 

selection and a third MRA test for publication selection itself: meta-significance testing 

(MST), precision-effect testing (PET) and funnel-asymmetry testing (FAT).  In likely 

applications, these tests for detecting genuine effects perform quite well even when the 

incidence of publication selection is severe.  However, as the relative magnitude of 

pervasive misspecification bias increases, MST becomes biased and vulnerable to an 

inflation of type I error rates.  Nonetheless, PET and the combined PET/MST joint test 

have acceptable type I error rates.  Likewise, combining two biased estimates of effect 

(the unadjusted average reported effect and the meta-regression coefficient on precision) 

can greatly reduce bias. 

 

II. The meta-regression of publication selection and statistical power 

(L)et Y(X,Z) be the response surface giving the expected treatment effect for an outcome Y as a 
function of scientifically interesting factors X. . . and design factors Z. . . .  Letting Z=Z0 represent 
perfect studies (e.g., infinitely large, perfectly randomized), the objective should be to estimate 
Y(X, Z=Z0) by estimating Y(X,Z) from observed studies and extrapolating to Z0.  The required 
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statistical modelling efforts. . . address the underlying scientific questions as opposed to the 
peripheral publication process questions.       —Rubin (1988, pp. 457-58) 

 

The purpose of meta-regression analysis is to model, estimate and explain the excess 

variation among reported empirical results (Stanley, 2001).  Meta-regression analysis 

(MRA) offers a methodology in which to understand the research process itself and to 

map the effect of the researchers’ choices about data, estimation techniques, and 

econometric models onto a research literature (Stanley and Jarrell, 1989).  If MRA were 

only to identify which research choices are responsible for the excess variation routinely 

found among empirical economic estimates (Roberts and Stanley, 2005), it would be a 

great success. Yet, meta-regression analysis offers more, an explicit econometric model 

of statistical power and tests for publication selection and genuine effect corrected for the 

contaminating effects of publication selection.   

 

Funnel plots 

The simplest and most commonly used method to detect publication bias is an informal examination of a 
funnel plot.         – (Sutton et al., 2000b, p.1574) 

  

A funnel graph plots precision, the inverse of the standard error (1/Se), vs. non-

standardized estimates. Figure 1 is such a funnel graph and plots data from Doucouliagos 

and Laroche’s (2003) meta-analysis of 73 studies of union-productivity effects.  In the 

absence of publication selection, estimates will vary randomly, hence symmetrically, 

around the ‘true’ effect. Thus, it is the graph’s asymmetry that is key to identifying 

publication selection.6  Typically, selection is for negative price elasticity (Dalhuisen et 

al., 2003; Stanley 2005a), stationary unemployment rates (Stanley, 2004), positive trade 

effects from the adoption of a common currency (Rose and Stanley, 2005), or a positive 

correlation between economic freedom and economic growth (Doucouliagos, 2005).  

                                                           
6 When statistically significant effects are selected regardless of their direction, a symmetric, but 
hollow, funnel graph may result.  Though interesting, this type of publication selection bias is 
not as pernicious because selection biases tend to cancel one another out.  In any case, by taking 
the absolute value of effects in equation (1) below, this type of publication bias may also be tested 
and corrected (Stanley, 2005a, pp.317-20). 
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However, heteroscedasticity dictates the expected inverted funnel shape.  Studies with 

less precision and hence larger standard errors are at the bottom of the graph and will 

produce estimates that are more spread out.   

 The funnel graph in Figure 1 appears to provide a nearly ideal depiction of the 

expected inverted funnel shape of a research literature absent publication selection.7  Its 

inverted funnel shape is unmistakable, but its left side has a somewhat thinner 

midsection.  Visual inspections of funnel graphs are inherently ambiguous and subjective. 

Fortunately, meta-regression analysis (MRA) offers a formal test of the asymmetry of 

funnel graphs. 

 

Figure 1: Funnel Plot, Union-Productivity Partial Correlations 
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7 Yet appearances can be deceiving.  This is the reason that more formal statistical tests are 
needed.  In this case, pockets of publication selection bias can be statistically identified even 
though the graph appears symmetric, more or less (Doucouliagos, Laroche and Stanley, 2005). 
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FAT-PET: MRA tests for publication selection and genuine effects 
Publication bias, the phenomenon in which studies with positive results are more likely to be published 
than studies with negative results, is a serious problem in the interpretation of scientific research 
        – Begg and Berlin (1988, p. 419) 

 

In economics, the standard model of publication selection is the simple MRA between a 

study’s estimated effect and its standard error (Card and Krueger, 1995, Ashenfelter et 

al., 1999, Görg and Strobl, 2001). 

    effecti =γ1 +γ0Sei + εi           (1) 
 

Estimated effects will vary randomly around the ‘true’ effect, γ1, when there is no 

publication selection.  In contrast, publication bias is correlated with the standard error—

γ0Sei.  Begg and Berlin (1988, pp. 431-2) show that publication bias is proportional to the 

inverse of the square root of the sample size, n-1/2, and thus proportional to the standard 

error.  Equation (1) may be derived from statistical theory when all research studies are 

subjected to publication selection.8  

 Although equation (1) is clearly heteroscedastic, a measure of the 

heteroscedasticity (Sei) is readily available.  Thus, weighted least squares (WLS) is the 

obvious method of obtaining efficient estimates. 

    ti = effecti/Sei =γ0 +γ1(1/Sei)+ ei         (2) 
 
Note that the independent variable is precision (1/Sei) and that the intercept and slope 

coefficients are reversed.  Equation (2) may now be estimated by OLS and provides a 

basis for testing both the funnel graph’s asymmetry (FAT—funnel-asymmetry test) and 

also whether there is a genuine effect beyond publication selection (PET— precision-

effect test). 
                                                           
8  Consider the conventional t-statistic:  ti = (effecti – γ1)/Sei, for γ1  representing the true effect.  
This will be approximately normal in large samples.  If there is strict selection for significance yet 
no genuine effect, then a study is published only when its ti exceeds the critical value, tc.  Thus, 
observed tis will have a truncated non-central, t-distribution.  We may define γ0 as the mean of 
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 Egger et al. (1997) offer the conventional t-test of the intercept of equation (2), γ0, 

as a test for publication bias.  The sign of g0, γ0’s estimate, indicates the direction of this 

bias.  Testing H0: γ0=0 becomes a test of the funnel graph’s asymmetry (FAT) (Sutton et 

al., 2000).  Unfortunately, this test for publication bias is known to have low power 

(Egger et al., 1997).  

  However, the MRA model defined by equation (2) has the unexploited potential 

to identify genuine empirical effects, regardless of publication selection bias.  Here, we 

propose the testing of γ1 in equation (2) as a test for authentic empirical effects, 

‘corrected’ for publication selection—precision-effect test (PET).  According to this 

model of publication selection, equation (1), as n approaches infinity and as Se goes to 

zero (recall Rubin’s ‘perfect studies’), observed effects approach γ1.  Testing H0: γ1=0 in 

equation (2) becomes a test for genuine effects beyond systematic contamination from 

publication selection.  Investigating the properties of this proposed test is the central 

focus of this paper. 

Unfortunately, the MRA regression model (2) has several statistical problems.  

Because the standard errors (Sei) are themselves estimates, the MRA estimates may be 

biased (Macaskill et al., 2001). Publication selection is likely to cause additional 

problems for the estimation of MRA model (2).  When only significant effects are 

reported, the sampling errors of the observed effects are drawn from a truncated 

distribution.  These errors will be thereby skewed and no longer normal. Lastly, equation 

(2) will mis-specify the relationship between observed t-values and standard errors when 

some studies do not engage in publication selection.9  Thus, it will be a great challenge 

for these MRA methods to see through publication selection, sampling error, and likely 

                                                                                                                                                                            
the large sample approximation to this truncated non-central t-distribution.  Hence, conditional 
on this strict selection, γ0 = [E(effecti)– γ1]/ Sei, implying equation (1). 
9 If a literature is composed of a mix of studies that select for significant effects and others that do 
not, equation (1) becomes: effecti =γ1 + Si γ0Sei + εi ;  where Si =1 if study i is engaged in selection, 
0; otherwise.  However, Si is unobservable, and studies where Si =1 are typically over-sampled. 
Of course, if we had full information about the characteristics of published and unpublished 
studies alike, Heckman’s correction for selection bias could be used.          

 



 9

misspecification biases to identify underlying empirical effects, reliably. Nonetheless, the 

Monte Carlo simulations below reveal that precision-effect testing is surprisingly 

effective in separating the wheat from the chaff.   

 

Hedges’ maximum likelihood, publication selection estimator (MLPSE) 
 

Hedges (1992) offers a more sophisticated econometric model of the publication 

selection process.  This method assumes that the likelihood of publication is an 

increasing step function of the complement of a study’s p-value.   

 ω1  if –σi Φ−1(a1)< effecti < ∞  

 w(effecti,σi) = ωj  if  –σi Φ−1(aj)< effecti < –σi Φ−1(aj-1) 
  ωk  if  –∞< effecti < –σi Φ−1(ak-1) 
 

where 1<j<k, and Φ−1(a1) is the inverse cumulative normal (Hedges and Vevea, 1996, 

p.304).  The weights of these arbitrary cut points, aj, can be estimated from the data.  

After fully parameterizing this selection model, Hedges (1992) derives the joint 

likelihood and uses a multivariate Newton-Raphson method to find its maximum.   

 Hedges’ maximum likelihood, publication selection estimator MLPSE has been 

applied to six areas of economic research but with mixed success—Ashenfelter et al. 

(1999), Florax (2002), Abreu et al. (2005), and Nijkamp and Poot (2005).  Of the six sets 

of economic research literature to which MLPSE has been applied, three are problematic.  

Florax (2002) finds that MLPSE does not converge for estimates of the price elasticity of 

water demand. He also unearths the ‘awkward’ implication that the probability of 

publishing an insignificant stringency elasticity is greater than the probability of 

publishing a statistically significant one.  Likewise, Abreu et al. (2005) obtain 

implausible weights for publishing estimates of economic convergence.  They find that 

studies with insignificant p-values between .05 and .10 are more likely to be published 

than statistically significant ones. 
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Meta-significance testing (MST) 
 

A second meta-regression approach to identify genuine effects beyond publication 

selection is based on statistical power.  Statistical power causes the magnitude of a 

standardized test statistic (e.g., its t-value) to vary positively with degrees of freedom 

when there is, in fact, an overall genuine empirical effect.  Suppose researchers wish to 

know whether some parameter, β1, is equal to zero. When this hypothesis is true, 

estimates of β1 will vary randomly around zero, and the t-value will be independent of its 

degrees of freedom.  Because the probability of the type I error, α, is constant for all 

sample sizes, standardized test statistics adjust for any effect caused by differences in 

degrees of freedom alone.  Therefore, when H0: β1 =0 is true, large values of the 

standardized test statistic will be observed rarely and randomly, regardless of degrees of 

freedom.  Alternatively, should H0 be false, statistical power will cause the observed 

magnitude of the standardized test statistic to be positively associated with the square 

root of its degrees of freedom.  This positive relationship can be expected regardless of 

the size of the effect, β1 ≠0, and irrespective of contamination from random 

misspecification biases.  This trace of statistical power identifies a genuine empirical 

effect when found across a given research literature.   

More precisely, statistical theory predicts that the t-ratio will be related to the 

square root of degrees of freedom, or 

   E(log|ti|) = α0 + α1log(dfi)             (3) 
 

Where α1=0 if there is no effect (i.e., H0: β1 =0 is true), and α1=½ when H0 is false 

(Stanley, 2005a).   

 This meta-significance test provides evidence of a genuine empirical effect if the 

corresponding MRA rejects H0:α1<0.  In this way, a genuine empirical effect creates a 

power trace.  If there is a genuine underlying effect, there will also be a logarithmic 

relationship between a study’s t-statistic and its degrees of freedom.  If we find a positive 
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association between df and the standardized test statistic across a given empirical 

literature, the authenticity of the effect in question is confirmed. 

However, statistical theory is only one consideration; practical application might 

prove quite different.10  How well can we expect these tests to work in practice?  Do 

these meta-regression strategies for publication bias possess desirable statistical 

properties?   Are they biased or inefficient?  Next, the small-sample properties of FAT, 

MST and PET are investigated when selection and misspecification biases infest the 

research literature.   

 

III. Simulation Results 

Funnel-Asymmetry Testing (FAT) 
 

Table 1 reports size and power of 10,000 replications of the funnel-asymmetry test—see 

the Appendix for a description of the details of the simulation design.  Recall that FAT 

tests H0: γ0=0 in equation (2).  The numbers reported in the tables below are the 

proportions of these 10,000 replications that produced a statistically significant test result 

(α=.05).  Depending on the particular design condition, these proportions represent either 

the level or the power of FAT in detecting publication selection.  When the incidence of 

publication selection is 0%, the reported proportion represents the observed frequency of 

a type I error (i.e., the test’s level).11  Table 1 reports type I error rates that are all near 

                                                           
10 Publication selection can be expected to affect equation (3) and make MST less powerful. 
Recall that publication bias is expected to be proportional to n-1/2, inducing an inverse relation 
between effect and sample size.  In the absence of publication selection, the standardized effect 
(e.g., the t-statistic) will be positively associated with degrees of freedom and proportional to the 
square root of degrees of freedom when there is an effect—recall equation (3).  Thus, this inverse 
relation caused by selection attenuates, or lessens, the expected positive relationship between t 
and df.  Publication selection makes it more difficult to reject H0:α1<0 and thereby reduces MST’s 
power. 
11 All tables report the observed levels of these MRA tests rather than their nominal levels, which 
is always set at .05.  Reported levels are the observed relative frequency of type I errors for the 
data generating process (DGP) described in the Appendix.  Technically, the reported levels need 
not be the ‘size’ of these tests, because the size “is the supremum of the rejection probability over 
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their .05 nominal levels, making FAT a valid test for the presence of publication 

selection.   

 Yet, such is the nature of trying to distinguish the existence of publication 

selection from a potentially genuine effect.  Hedges and Vevea (1996) also report low 

power levels for Hedges’ maximum likelihood, publication selection estimator (MLPSE). 

“The significance tests for selection performed poorly. . . . The likelihood ratio test. . . 

was abysmally nonrobust” (Hedges and Vevea, 1996, p.330).   

 

TABLE 1 
 Power and level of funnel-asymmetry testing (FAT) 

Mis-
specification 

Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
FAT 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
FAT 

 0% .0479 .0449 .0469 .0489 
None 25% .0474 .1822 .1034 .2070 

 50% .1434 .7315 .2251 .5692 
 75% .5870 .9999 .4189 .9101 

Random 0% .0504 .0476 .0508 .0458 
Bias: 25% .0529 .1538 .0945 .1812 

σbias=.25 50% .1209 .5956 .1958 .4959 
 75% .4706 .9935 .3562 .8412 

Notes: Reported frequencies are based on 10,000 replications.  FAT tests H0: γ0=0 in equation (2), ti = 
effecti/Sei =γ0 +γ1 (1/Sei)+ ei.

 

 All methods for detecting the presence of publication selection bias have low 

power.  Thus, it would be unwise to use the absence of evidence of publication bias as a 

reason not to take measures to adjust or to correct for it.  Even when publication bias 

greatly exaggerates the magnitude of the reported effects, statistical tests are likely to 

miss it.  And, conventional reviews will mistake these undetected publication biases for 

some genuine empirical effect.  The unreliability of testing for the presence of 

publication selection bias forces us to focus upon the more important scientific questions. 

                                                                                                                                                                            
all DGPs that satisfy the null hypothesis” (Davidson and Mac Kinnon, 2004, p.125).  I wish to 
make no claim that the reported levels are the supremum for all possible DGPs.   
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Is there is a genuine empirical effect irrespective of publication selection?  What is the 

magnitude of this effect?  Researchers and policy makers need answers to these central 

questions.  Thus, we need a reliable method to identify genuine empirical effects that is 

robust to potential contamination from publication selection.  In the next section, MRA 

tests for genuine effects are investigated for resilience to publication selection bias.  

Afterwards, the statistical properties of corrected estimates are simulated and discussed. 

 

MRA tests for empirical effects in the presence of publication selection 
 

Table 2 reports size and power of 10,000 replications of meta-significance testing 

(MST)—equation (3).  Recall that MST tests H0:α1=0 in the meta-regression model (3).  

When H0:β1=0 is forced to be true, there is no genuine effect to uncover, and the reported 

proportion is the test’s level, or the observed type I error rate.  Alternatively, when β1 =1, 

the proportions reported in these tables (Tables 2-8) measure the power (or frequency) 

that the MRA tests will correctly detect a genuine underlying empirical effect.   

 Note first the simulation findings when there are no misspecification biases 

(Table 2).  Regardless of the sample size or of the incidence of publication selection, the 

type I error rates are always under the nominal 5% level.  Yet, meta-significance testing 

is quite powerful, correctly detecting the effect 80-90% of the time even when there are 

only 20 observations.  With 80 observations, MST is virtually guaranteed to find even a 

small empirical effect.  The effect that we are attempting to identify in these simulations 

is rather small, R2=9%, and the sample sizes used are also quite modest {30, 50, 75, 100, 

200}—see the Appendix for a detailed description of the simulation design. When 

conventional statistical assumptions are valid, MST possesses very desirable properties, 

regardless of the incidence of publication selection.  Hence, MST exhibits robustness 

against publication selection.  In most experimental applications where misspecification 

bias is not an important concern (e.g., medical research or experimental economics), 

MST can provide a solid basis upon which to infer an effect even in the presence of 

dominant publication selection.   
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TABLE 2 
Power and level of meta-significance testing (MST) 

Mis-
specification 

Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
MST 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
MST 

 0% .0479 .0420 .9037 1.000 
None 25% .0189 .0201 .8766 1.000 

 50% .0059 .0101 .8512 1.000 
 75% .0010 .0020 .7909 .9993 

Random 0% .0999 .1790 .7726 .9981 
Bias: 25% .0534 .1113 .7412 .9951 

σbias=.25 50% .0260 .0652 .7098 .9935 
 75% .0168 .0386 .7070 .9928 

Notes: Reported frequencies are based on 10,000 replications.  MST tests H0: α1=0 in equation (3), 
E(log|ti|) = α0+ α1log(dfi). 

 

Most Monte Carlo studies of econometric methods assume that the underlying 

models are correctly specified.  Variations in design are investigated for different levels 

of effects, variation, etc., as long as the estimation model is not fundamentally 

compromised.  Here, however, it is fully recognized that reported findings, which 

constitute our MRA data, may be affected by many different types of misspecification 

biases.  Thus, literatures thoroughly infested with unknown misspecification biases are 

simulated.  Obviously, such cases are more problematic to any statistical method but, in 

turn, are more likely to reflect the actual nature of economic research.    

 Even when all studies contain random misspecification bias, σbias=.25 (see the 

Appendix), MST’s power remains quite high—70% or larger when n is 20 and over 99% 

for 80 observations—Table 2.  Note how publication selection obscures a genuine effect.  

Typically, a larger incidence of publication selection lowers MST’s power by attenuating 

its estimated MRA coefficient.  This attenuation and lower power is exactly what is 

expected.  The only problem is that there is an inflation of type I error rates in some 

cases.  In particular, when there is no publication selection, the level of MST rises to 10 

or 16% for n=20 and 80, respectively.   
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 This inflation of type I error rates represents a serious problem for MST.  The 

purpose of these meta-regression tests is to harden our empirical economic inferences.  

Thus, the probability that findings of genuine empirical effects are the result of 

misspecification bias, error, or any other artifact must be kept low.  In this context, even 

though the level of MST is many times smaller than its associated power, the type I error 

rates can be unacceptably high.  Not only should we not ignore this problem, meta-

regression testing strategy must somehow accommodate or remedy these inflated αs.  As 

discussed below, joint testing, which should be conducted in any case by a 

comprehensive meta-analysis, provides a readily available remedy.12

 Table 3 reports the same simulation design for precision-effect testing (PET), 

H0: γ1=0 in equation (2).  Note that the pattern of power and level of PET is very similar 

to MST.  When there is no large-sample misspecification bias, precision testing has very 

desirable properties. Thus, it too is robust against publication selection.  Like MST, the 

power of PET declines as the incidence of publication selection rises.  It simply becomes 

harder to see the message through the noise.  PET is more powerful in detecting genuine 

effects and less vulnerable to an inflation of α.  Precision-effect testing seems to provide 

a viable method for testing the presence of a genuine empirical effect, irrespective of the 

extent of publication selection.   

 PET’s high power is surprising because the meta-regression of t-values on 

precision (1/Sei) is known to contain errors-in-variables (EV) bias.  The downward bias 

for g1 revealed by these simulations is more benign than MST’s bias; this bias reduces 
                                                           
12 It might be instructive to consider why MST experiences this inflation of α.  The random, 
omitted-variable misspecification biases that are added to each estimate in this simulation do not 
lessen with larger samples.  However, because the standard error of the estimator does decline 
predictably with the square root of the study’s sample size, the effect of the random omitted-
variable bias on the reported t-value rises with the sample size. Unlike PET, MST takes the 
absolute value, forcing both large positive and large negative t-values to become large and 
positive.  Therefore, with random misspecification bias, the typical reported |t| will increase 
with sample size.   Unfortunately, MST is looking for exactly such a positive association between 
sample size and reported t-values as the signature of statistical power and hence of genuine 
empirical effect.  In this way, MST may be fooled by pervasive misspecification and publication 
bias.  When there are large-sample misspecification biases but no genuine empirical effect, MST 
is, itself, upwardly biased.  
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power but does not increase PET’s level.  On the other hand, the way that publication 

selection is simulated here by selecting t-values that are statistically significant regardless 

of the sample size is more consistent with  equation (1) and hence with PET.  Thus, 

PET’s MRA model better reflects the publication selection mechanism used in these 

simulations.  In the real world, publication selection is apt to be more complex; hence 

 
TABLE 3 

Power and level of precision-effect testing (PET) 
Mis-

specification 
Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
PET 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
PET 

 0% .0502 .0481 .9557 1.000 
None 25% .0060 .0089 .9368 1.000 

 50% .0011 .0032 .8990 1.000 
 75% .0011 .0012 .8778 1.000 

Random 0% .0630 .0633 .8488 1.000 
Bias: 25% .0135 .0192 .8152 .9999 

σbias=.25 50% .0066 .0105 .7842 .9999 
 75% .0078 .0152 .7490 .9996 

Notes: Reported frequencies are based on 10,000 replications.  PET tests H0: γ1=0 in equation (2), ti = 
effecti/Sei =γ0 +γ1 (1/Sei)+ ei.
 

 
 Table 4 reports the power and level of a joint PET/MST test for genuine 

empirical effects.  This PET/MST test is passed only in the case that both tests reject the 

null hypothesis of no effect.  In all cases, the observed type I error rates are much less 

than the nominal .05 level.  Yet fortunately, modest power is sacrificed as the result of 

combining these tests.   Even in literatures riddled with serious misspecification bias and 

dominated by publication selection, precision-effect and joint PET/MST testing may be 

relied upon to determine correctly whether the alleged effect is authentic.  
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TABLE 4 
Power and level of the joint PET/MST test 

Mis-
specification 

Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
Joint Test 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
Joint Test 

 0% .0042 .0019 .8866 1.000 
None 25% .0004 .0004 .8513 1.000 

 50% .0001 .0002 .8249 1.000 
 75% .0000 .0000 .7909 .9993 

Random 0% .0117 .0121 .7314 .9981 
Bias: 25% .0018 .0024 .6958 .9951 

σbias=.25 50% .0011 .0019 .6638 .9935 
 75% .0020 .0019 .6590 .9927 

Note: Reported frequencies are based on 10,000 replications.  PET tests H0: γ1=0 in equation (2), ti = 
effecti/Sei =γ0 +γ1 (1/Sei)+ ei.  MST tests H0: α1=0 in equation (3), E(log|ti|) = α0+ α1log(dfi). 
 
  

Not satisfied with these positive findings, it remains to subject the previous 

simulations to even larger ubiquitous misspecification biases (i.e., σbias=.5 and 1.0) and to 

other potential problems. Tables 5, 6 and 7 report the power and level of MST, PET and 

the joint PET/MST tests, respectively, when a study’s typical misspecification bias is 

doubled to σbias=.5 and then redoubled.  Missing are the results for the case of no 

misspecification selection because they are identical to those reported in Tables 2-4.  As 

seen clearly in Table 5, MST’s type I error rates become drastically inflated in most 

design conditions.  This is especially true, when the MRA uses 80 observations.  In 

contrast, PET exhibits little α-inflation (Table 6).  Even if the typical misspecification 

bias greatly exceeds the sampling error, PET has acceptable size in nearly all cases.  

When combined, the joint PET/MST’s type I error rates remain below their nominal level 

(α), except in one case—σbias=1.0, n=80 with 75% of the studies selected (see Table 7). 
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TABLE 5 

 Power and level of meta-significance testing (MST) 
Mis-

specification 
Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
MST 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80             
MST 

Random 0% .1950 .4566 .5275 .9369 
Bias: 25% .1368 .3517 .5047 .9279 

σbias=.50 50% .0944 .2873 .5059 .9246 
 75% .0912 .2620 .5401 .9408 

Random 0% .3170 .7395 .3790 .8070 
Bias: 25% .2859 .6848 .3697 .8091 

σbias=1.0 50% .2640 .6438 .3963 .8388 
 75% .2776 .6708 .4841 .9040 

Notes: Reported frequencies are based on 10,000 replications.  MST tests H0: α1=0 in equation (3), 
E(log|ti|) = α0+ α1log(dfi). 
 
 

TABLE 6 
Power and level of precision-effect testing (PET) 

Mis-
specification 

Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
PET 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
PET 

Random 0% .0700 .0689 .6111 .9940 
Bias: 25% .0227 .0297 .5919 .9838 

σbias=.50 50% .0169 .0270 .5763 .9930 
 75% .0275 .0606 .5795 .9931 

Random 0% .0650 .0635 .3369 .8594 
Bias: 25% .0389 .0387 .3408 .8673 

σbias=1.0 50% .0330 .0418 .3383 .8935 
 75% .0548 .1052 .3764 .9187 

Notes: Reported frequencies are based on 10,000 replications. PET tests H0: γ1=0 in equation (2), ti = 
effecti/Sei =γ0 +γ1 (1/Sei)+ ei.
 
 

However, some price must be paid for combining tests and for attempting to 

confuse these MRA tests with large and pervasive biases.  Unsurprisingly, these larger 

misspecification biases cause power to decline.  With only 20 observations, the joint test 

correctly detects a genuine effect less than half the time.  In contrast, when a larger 

number of observed effects are available (n=80), joint testing and PET remain rather 
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powerful.  The critical dimension is the relative magnitude of the misspecification bias.  

As the noise dominates the signal, or as random bias overwhelms declining sampling 

error, it becomes harder to detect effects.  If the observed variance among reported 

effects is too many times larger than the typical sampling error variance of these effects, 

then the reviewer should exercise added caution in interpreting these meta-regression 

tests.13  Among past meta-analyses in economics, the ratio of observed variance among 

effects to their sampling error variance ranges from 1.6 to 3.4 (Dalhuisen, et al., 2003; 

Doucouliagos and Laroche, 2003; Rose and Stanley, 2005).  Ratios generated by these 

simulations encompass the observed range of variance ratios. 
 

TABLE 7 
Power and level of the joint PET/MST test 

Mis-
specification 

Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
Joint Test 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
Joint Test 

Random 0% .0195 .0346 .4518 .9354 
Bias: 25% .0064 .0140 .4334 .9272 

σbias=.50 50% .0063 .0121 .4304 .9230 
 75% .0120 .0283 .4602 .9334 

Random 0% .0270 .0503 .2249 .7331 
Bias: 25% .0177 .0296 .2241 .7453 

σbias=1.0 50% .0172 .0319 .2411 .7820 
 75% .0386 .0891 .3022 .8546 

Notes: Reported frequencies are based on 10,000 replications.  PET tests H0: γ1=0 in equation (2), ti = 
effecti/Sei =γ0 +γ1 (1/Sei)+ ei.

 

 

Lastly, the statistical performance of these tests is examined when the original 

studies use much larger sample sizes.  For these simulations, sample size is chosen as a 

random number uniformly distributed between 100 and 1,000.  Otherwise, the previous 

design conditions are unchanged.  Table 8 reports the size and power of PET/MST.  By 
                                                           
13  Extreme heterogeneity (i.e., very large σbias) accompanied by a high incidence of publication 
selection can invalidate PET by inflating the type I error rate.  However, this potential type I 
inflation can be controlled by adding a test for heterogeneity.  Simulations show that the failure 
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increasing the average sample size five-fold, the relative magnitude of misspecification 

bias to sampling error becomes much larger (hence, ‘worse’).  As before, in all cases but 

one, type I error rates are within their nominal .05 level.  However, there is also a 

positive side to these larger sample sizes.  This larger sample design contains greater 

variation among sample sizes and thereby among standard errors across studies.  Larger 

variation of the MRA independent variable, in turn, causes statistical power of these 

MRA tests to increase, dramatically. Even though this design presents a serious 

challenge to these MRA tests, the joint PET/MST test has quite desirable statistical 

properties.  

 

TABLE 8 
Power and level of PET/MST: Original samples are uniform (100, 1000) 

Mis-
specification 

Incidence of 
Publication 
Selection 

    No Effect   
n=20        
      Level of 

i.e., (β1=0)     
n=80              
Joint Test 

        Effect    
n=20        
     Power of 

i.e., (β1=1)    
n=80              
Joint Test 

 0% .0014 .0021 .9996 1.000 
None 25% .0066 .0038 .9998 1.000 

 50% .0111 .0074 1.000 1.000 
 75% .0168 .0102 1.000 1.000 

Random 0% .0082 .0116 .9187 1.000 
Bias: 25% .0103 .0172 .9192 .9999 

σbias=.25 50% .0189 .0292 .9245 .9999 
 75% .0388 .0789 .9263 .9998 

Notes: Reported frequencies are based on 10,000 replications.  PET tests H0: γ1=0 in equation (2), ti = 
effecti/Sei =γ0 +γ1 (1/Sei)+ ei.

 
 Thus far, a strategy for testing underlying empirical effects has been proposed, 

and its properties have been investigated using simulations.  Next, we consider how best 

to estimate the magnitude of the effect when one has been identified. 

 

                                                                                                                                                                            
to reject H0:σe

2<2 serves as an effective means to limit PET’s type I errors (Stanley, 2005b), where 
σe

2 is the error variance from equation (2).  
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Mean-PET: Estimating empirical effects in the presence of publication selection 
 

Beyond tests of significance and parameter restrictions, researchers are often interested in 

estimating the magnitude of the empirical effect at issue.  Obviously, the magnitude of 

key economic parameters has important practical and policy implications.  How can we 

best estimate the size of these effects when a literature may contain substantial 

publication selection?  Such a question forces the researcher to face a fundamental 

dilemma:  all evaluations of empirical estimates are biased in the presence of publication 

selection. 

 Recall that the MRA estimate of the coefficient on precision, 1/Sei, (equation 2) 

serves as a useful test for authentic effects.  Although the conventional t-test of this 

coefficient often provides a valid test of effects (PET), simulations show that the estimate 

of precision’s coefficient, g1 from equation (2), is biased downward when there is a 

genuine effect.  Simple or weighted averages of reported effects are no better.  These 

average reported estimates consistently overestimate the magnitude of the effect 

whenever there is directional publication selection.  Perhaps, the predictability of these 

biases offers a means to reduce estimation bias? 

 The approach investigated here combines the simple average of all reported 

estimates in a literature (i.e., Σb1i/L, where L is the number of studies in a literature) with 

the MRA estimate of γ1, g1, in equation (2).  By taking the midpoint of these two biased 

estimators, (g1+Σb1i/L)/2, estimation accuracy can be greatly improved.   Table 9 reports 

the average values of 10,000 simulations for both the unadjusted sample mean of the 

reported effects and the combined average of these two estimates—‘mean-PET’.   In 

most cases, mean-PET has a greatly reduced bias.  Under likely conditions, this 

combined estimate drastically reduces the absolute magnitude of the bias—by more than 

90% in many cases.   
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TABLE 9 
Mean effects of mean-PET vs. the unadjusted average 

Mis-
specification 

True effect  
β1

Publication 
Selection 

Sample Size 
n 

Simple       
Average 

Mean-PET 

 0 0% 20 .-.0005 -.0002 
 0 0% 80 -.0012 -.0012 
 0 25% 20 .2334 .1383 
 0 25% 80 .2345 .1368 
 0 50% 20 .4676 .2630 

Random 0 50% 80 .4677 .2648 
Bias: 0 75% 20 .7004 .3847 

σbias=.25 0 75% 80 .7016 .3877 
 1 0% 20 1.0012 1.0008 
 1 0% 80 1.0001 1.0001 

 1 25% 20 1.0660 .9981 
 1 25% 80 1.0653 .9974 
 1 50% 20 1.1320 .9905 
 1 50% 80 1.1318 .9911 
 1 75% 20 1.1988 .9885 
 1 75% 80 1.1971 .9844 
 0 0% 20 .0027 .0022 
 0 0% 80 .0011 .0004 
 0 25% 20 .2701 .1529 
 0 25% 80 .2706 .1532 
 0 50% 20 .5393 .3102 

Random 0 50% 80 .5399 .3114 
Bias: 0 75% 20 .8115 .4740 

σbias=.50 0 75% 80 .8095 .4733 
 1 0% 20 .9996 1.0024 
 1 0% 80 .9991 .9984 

 1 25% 20 1.0962 1.0217 
 1 25% 80 1.0966 1.0200 
 1 50% 20 1.1958 1.0401 
 1 50% 80 1.1933 1.0360 
 1 75% 20 1.2901 1.0531 
 1 75% 80 1.2909 1.0516 

Notes: Reported frequencies are based on 10,000 replications.  Mean-PET is the average of the simple 
unadjusted average effect and the estimate of γ1 in equation (2), ti = effecti/Sei =γ0 +γ1 (1/Sei)+ ei.
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TABLE 10 
Mean square errors of mean-PET vs. the unadjusted average 

Mis-
specification 

True effect  
β1

Publication 
Selection 

Sample Size 
n 

Simple       
Average 

Mean-PET 

 0 0% 20 .0134 .0273 
 0 0% 80 .0035 .0070 
 0 25% 20 .0652 .0435 
 0 25% 80 .0577 .0246 
 0 50% 20 .2267 .0877 

Random 0 50% 80 .2208 .0746 
Bias: 0 75% 20 .4959 .1605 

σbias=.25 0 75% 80 .4936 .1534 
 1 0% 20 .0137 .0284 
 1 0% 80 .0034 .0069 

 1 25% 20 .0164 .0263 
 1 25% 80 .0072 .0066 
 1 50% 20 .0276 .0254 
 1 50% 80 .0199 .0065 
 1 75% 20 .0478 .0245 
 1 75% 80 .0410 .0062 
 0 0% 20 .0238 .0583 
 0 0% 80 .0059 .0144 
 0 25% 20 .0918 .0733 
 0 25% 80 .0780 .0355 
 0 50% 20 .3054 .1369 

Random 0 50% 80 .2952 .1064 
Bias: 0 75% 20 .6685 .2531 

σbias=.50 0 75% 80 .6578 .2308 
 1 0% 20 .0237 .0584 
 1 0% 80 .0059 .0139 

 1 25% 20 .0298 .0531 
 1 25% 80 .0144 .0132 
 1 50% 20 .0557 .0486 
 1 50% 80 .0417 .0129 
 1 75% 20 .0983 .0490 
 1 75% 80 .0882 .0136 

Notes: Reported frequencies are based on 10,000 replications. Mean-PET is the average of the simple 
unadjusted average effect and the estimate of γ1 in equation (2), ti = effecti/Sei =γ0 +γ1 (1/Sei)+ ei.

 
Although mean-PET has much to offer in reduced bias when the researcher has 

reason to suspect publication selection, biased estimates may sometimes be more 

efficient.  It remains to be seen whether the added variation caused by combining 

separate estimates overwhelms the reduction of bias.  Table 10 compares the mean 

square error (MSE) of mean-PET to the average of observed effect.  Here too, mean-PET 

is superior in the majority of cases.  Relative efficiencies are as low as 0.15, implying 
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that mean-PET out-performs the average by better than 6 to 1.   As expected, however, 

the simple average turns the tables when a literature exhibits no selection—out-

performing mean-PET by better than 2 to 1.  Without selection, nothing is to be gained 

by combining estimates and thereby increasing sampling variation.  When there is light 

selection (25%), the results are mixed.  Mean-PET is better in larger samples (n=80) but 

sometimes worse in small ones (n=20).  Clearly, combining these two biased estimators 

is prudent only when publication selection is likely.  

It should be noted that mean-PET is quite robust to publication selection where 

there is an authentic effect. In fact, MSE decreases somewhat with higher incidence of 

selection.  When there is an effect, mean-PET is remarkably accurate. On the other hand, 

these desirable properties vanish when the effect likewise vanishes.  

 Table 11 reports the observed frequency that the true effect, β1, falls in a 

conventionally constructed 95% confidence interval around the combined estimate.  

Before constructing the confidence interval, it is assumed that the literature passes 

several tests for effect.  This stringent criterion for effect is defined as having an average 

reported t-value equal to 2 or greater and passing three separate hypothesis tests—MST, 

PET and a simple t-test of the mean reported effect.  If any of these tests are not passed, 

the researcher should assume that the effect in question is zero. 

To be conservative, cases where there are no effects are mixed equally with cases 

where there are genuine effects.  When all of the above tests are passed, a confidence 

interval is constructed.  In practice, the problem is to differentiate between falsely 

identified effects (i.e., type I errors) and authentic effects.  To address this issue, Table 11 

reports the results from 10,000 replications of genuine effects (either β1=1 or β1=2) that 

are mixed together with 10,000 replications where there is no effect (β1=0). Confidence 

intervals are constructed by:  (g1+Σb1i/L)/2 + tα/2 Sc ; where Sc = (Sb1
2/n + Sg1

2)½,  Sb1
2 
is 

the observed variance among reported effects (b1s) and Sg1
2 is the variance of the 
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estimated PET coefficient.14  As reflected in Table 11, the confidence levels largely 

conform to their nominal levels.  The frequency that the true effect falls in the 95% 

confidence levels rises with the size of the genuine effect but declines as the magnitude 

of misspecification bias increases. 

TABLE 11 
Proportion of 95% confidence intervals containing the true effect 

Mis-
specification 

True effect  
β1

Publication 
Selection 

Sample Size 
n 

Mean-PET 

 1 0% 20 .9615 
 1 0% 80 .9528 
 1 25% 20 .9593 
 1 25% 80 .9539 
 1 50% 20 .9593 

Random 1 50% 80 .9528 
Bias: 1 75% 20 .9557 

σbias=.25 1 75% 80 .9367 
 2 0% 20 .9506 
 2 0% 80 .9524 

 2 25% 20 .9497 
 2 25% 80 .9500 
 2 50% 20 .9487 
 2 50% 80 .9404 
 2 75% 20 .9403 
 2 75% 80 .9427 
 1 0% 20 .9330 
 1 0% 80 .9467 
 1 25% 20 .9200 
 1 25% 80 .9417 
 1 50% 20 .8976 

Random 1 50% 80 .9275 
Bias: 1 75% 20 .8611 

σbias=.50 1 75% 80 .8888 
 2 0% 20 .9367 
 2 0% 80 .9407 

 2 25% 20 .9404 
 2 25% 80 .9313 
 2 50% 20 .9369 
 2 50% 80 .9310 
 2 75% 20 .9261 
 2 75% 80 .9167 

Notes: Reported frequencies are based on 10,000 replications.  Mean-PET is the average of the simple 
unadjusted average effect and the estimate of γ1 in equation (2), ti = effecti/Sei =γ0 +γ1 (1/Sei)+ ei.

                                                           
14 This formula for the standard error of mean-PET assumes that the two estimates are 
independent. Table 11 shows that confidence intervals constructed under this assumption are 
largely valid.   
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IV. Conclusions 
 

This study offers a simple meta-regression approach to test and estimate empirical effects 

in research literatures dominated by publication selection and investigates their small-

sample properties.  Both meta-significance testing (MST) and precision-effect testing 

(PET) are quite powerful and possess type I error rates within their nominal levels, 

regardless of the incidence of publication selection, when conventional statistical 

assumptions are satisfied.  For many areas of social and medical research, both MST and 

PET can provide a viable remedy for publication selection.  Combining them only makes 

their findings more resilient to gross misspecification biases.  As long as an area of 

research is free from large and pernicious estimation biases, both of these meta-

regression testing strategies provide valid tests for genuine empirical merit, regardless of 

the incidence of publication selection.   

Naturally, there are limits to the robustness of these tests for genuine empirical 

merit.  Random, large-sample misspecification biases can cause MST to identify a 

genuine effect much too frequently (i.e., an inflation of the type I error rates).  Even in 

cases where random misspecification biases are somewhat larger than conventional 

sampling error, PET and joint testing possess acceptable, if less powerful, small-sample 

properties.  The relative magnitude of misspecification bias to sampling error is the key 

parameter in assessing the vulnerability of these meta-regression methods to type I error 

inflation.  Combining precision-effect testing (PET) with a test for ‘excess’ remaining 

heterogeneity (H0:σe
2<2) in equation (2) can be used to manage potential type I error 

inflation should a literature contain dominating misspecification biases—σbias>1.0 

(Stanley, 2005b).  Thus, funnel-asymmetry and precision-effect tests need to be 

interpreted carefully when there remains large unexplained variation in equation (2).  

However not all misspecification biases will be random or selected to produce a 

statistically significant result.  Variations in reported research results will often be 

systematically related to the modeling choices made by researchers concerning which 
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independent variables, functional forms, data sets, or estimation techniques they use.  

Explaining the effect of such research choices on research outcomes has been the 

primary focus of many applications of meta-regression analysis (MRA) in economics 

(Roberts and Stanley, 2005).  The MRA methods developed in this paper may also be 

employed in a multivariate context to explain potential systematic variation in reported 

research, aside from what might arise from publication selection.  See Doucouliagos 

(2005), Rose and Stanley (2005) and Stanley (2005a, b) for examples of multivariate 

explanatory FAT-PET-MRAs.  “It is our view that meta-regression analysis while no 

panacea, no magic elixir, is a helpful framework to integrate and explain disparate 

empirical economic literature. . . .   MRA provides a mechanism through which one can 

more objectively ask questions about economic research, offer explanatory hypotheses, 

and rigorously test those conjectures by confronting them with the actual research 

record” (Stanley and Jarrell, 1989, p. 169).  By explicitly modelling and correcting 

publication selection, the methods developed in this paper can help researchers better 

understand and explain the wide variation routinely found in published economic 

research.   
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Appendix: Simulation design 

 

These simulations are all based on research literatures that test a given regression 

coefficient (i.e., H0:β1=0).  Such simple regression tests are meant only as a paradigm for 

testing other effects, in general.  Similar statistical properties for these MRA tests should 

be found when an empirical literature uses other specific statistical tests.15   

 The basic structure of these meta-regression simulations may be sketched as: 

1. Generate the regression variables randomly. 

2. Use OLS to estimate and test H0:β1=0.  Select significant test results.  Each 

selected test of H0:β1=0 comprises one study’s reported result in our hypothetical 

empirical literature.   

3. Simulate these meta-regression tests by repeating the previous steps either 20 or 

80 times.  At this stage, meta-regression models (2) and (3) are estimated to 

provide one realization of the corresponding MRA test.   

4. Repeat all of the above steps 10,000 times while tracking various outcomes for 

FAT, MST and PET.   

 The first step defines the data-generating process.  The independent variable (X1) 

for each study is simulated by a random uniform variable (100, 200).  As long as the 

independent variable is stationary, its distribution will not matter.  Y is then generated 

from: 

  Yi =100+β1X1i +β2X2i +100 ei  i=1, 2, … n        (4) 

 
ei ~NID(0,1).  The effect in question, β1, is assumed to be either 0 or 1. When β1=1, the 

average R2 is approximately 9%, and the correlation coefficient is about 0.3. Changing 
                                                           
15  However, additional limitations are found for F and χ2 restriction tests.  Because both positive 
and negative misspecification biases can cause larger F and χ2 values, large and ubiquitous 
misspecification biases can invalidate these MRA tests.  Stanley (2005b) simulates these MRA 
methods when applied to restriction testing and suggests how they might be adapted.   

 



 32

the values of β1 only affects the power of these tests, not their type I error rates. The 

larger one makes β1,  the higher the power.   The β2X2i term induces misspecification bias, 

in general, and omitted-variable bias, in particular.   

 As is widely known, omitting a relevant variable from a regression model causes 

the estimate of β1  to be biased and inconsistent.  Because this bias remains in large 

samples, it can be mistaken for a genuine effect, potentially causing problems for our 

MRA tests.  Other types of bias (i.e., small-sample bias that diminish with larger 

samples) cause little or no difficulty for these MRA tests.  Although only omitted-

variable biases are simulated here, they serve to represent any type of large-sample, 

misspecification bias (or inconsistency). Because such large-sample bias is the most 

problematic for these MRA tests for effect, only this type of bias is used in these 

simulations.  To establish a baseline, these simulations include cases where there are no 

misspecification biases. 

 Random misspecification bias is induced by making β2 in equation (4) a random 

normal variable, N(0,.25).  This random misspecification bias acts as ‘heterogeneity,’ 

which has been recognized as a key parameter by meta-analysts (Hedges and Vevea, 

1996; Sutton et al., 2000a).  The difference is largely a matter of interpretation. Here, we 

assume that variation in the expected estimated effects is caused by weaknesses in our 

empirical methods; whereas, heterogeneity is usually viewed as variation in the ‘true’ 

effect.   

 The most influential magnitude for the performance of these meta-regression 

methods is the size of the typical misspecification bias relative to the sampling error.  

The larger the ratio of the standard deviation of these misspecification biases (σbias) to the 

standard deviation of the sampling errors (σb1
), the worse the size and power of our MRA 

tests can become.  Both MST and PET investigate the expected effects that sample size 

(or standard error) has on the observed standardized test statistic.  Random 

misspecification bias obscures the underlying statistical structure, inducing bias in MST.  
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The larger the typical omitted-variable bias, the poorer the performance of these MRA 

tests. 

 In order to calibrate the simulations, relevant magnitudes from previous economic 

meta-analyses are investigated.  The average observed variation among reported effects 

found among three previous meta-analyses implies a standard deviation of this 

misspecification bias of approximately 0.1.16  To be conservative, this value is 

multiplied by two and half times, σbias=.25.  To further explore the robustness of these 

MRA tests, this value is again doubled and re-doubled in some simulations.  In the worse 

case explored here, σbias is assumed to be more than two and a half times the size of the 

typical sampling error and the same magnitude as the true effect when one is assumed to 

exist.  These larger values conform to the relative magnitudes of heterogeneity to the 

genuine effect assumed by Hedges and Vevea (1996) in their simulations of Hedges’ 

maximization likelihood corrections for publication selection.   

 In order to induce omitted-variable bias, X2i is made equal to X1i plus a random 

normal error.  Thus, β2, itself, becomes the omitted-variable bias.  Given these 

magnitudes and the randomness of both the omitted-variable bias and the sampling error, 

bias and error will often overwhelm a study’s results.  And, this is all the more true when 

there is also publication selection.   

                                                           
16 σbias is calculated from previous meta-analyses assuming that observed misspecification bias 
and sampling errors are independent.  However, our simulation shows that they will be 
somewhat positively correlated (r=.2) when there is publication selection.  Assuming 
independence, therefore, will tend to overestimate the size of σbias.  Given the observed variation 
of reported effects across studies and also the reported sampling variance (Sb1

2), σ2
bias can be 

calculated roughly as the difference.  Because standard errors decrease with larger samples, these 
estimates were extrapolated to the typical sample size used by the simulation.  The meta-
analyses used for the calibration of σbias concern estimates of union-productivity effects 
(Doucouliagos and Laroche, 2003), common currency effects (Rose and Stanley, 2005), and 
income elasticities of water demand (Dalhuisen et al., 2003).  Estimates of unemployment persistence 
are not used because nonstationarity induces nonstandard distributions (Stanley, 2004).  Also price 
elasticities of water demand are not used because they give a negative σ2

bias.  Simulations reveal that 
the observed variance of estimated effects can be less than its typical error variance when there is 
100% publication selection.   
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 The meta-regression models are assumed to be estimated using either 20 or 80 

studies.  Twenty is chosen because it is a rather small sample size for any regression 

estimate, while eighty is both practically feasible and, as we shall see, gives these tests 

power to spare.  Power depends in the expected way on the MRA sample size, σbias, the 

magnitude of the effect, and σb1
.  Sample sizes chosen for the original studies and used to 

test H0:β1=0 are {30, 50, 75, 100, 200}.  Simulations based upon randomly selected 

sample sizes give similar results, and distributions of sample sizes containing larger 

samples are also simulated and reported in Table 8.   

 Publication bias is simulated as selecting a statistically significant positive b1.  

That is, if the random estimate does not provide a significantly positive t-value, a new 

sample is taken and the original regression is run again with different random errors and 

random biases until a significant t-value is obtained by chance. For example, the 50% 

publication selection condition assumes that exactly half of the studies estimate and re-

estimate their regression models until a random, yet statistically significant, estimate is 

found and reported.  For the other half, the first random estimate, significant or not, is 

reported and used. 

 In practice, not all reported results that are published will have been selected for 

statistical significance.  Among previous economic meta-analyses for which I have 

sufficient data, the proportion of statistically significant results varies from 29% to 79%.  

These proportions (minus a portion of 5%) set an upper limit to the incidence of 

publication selection.  100% publication selection can be eliminated as very unlikely, if 

for no other reason, economic research is too contentious to permit unanimous 

agreement.  Therefore, it is assumed that the incidence of publication selection is either: 

0%, 25%, 50% or 75%.  The latter three correspond roughly to what Hedges and Vevea 

(1996) call ‘light,’ ‘moderate,’ and ‘extreme.’   
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Figure 1: Funnel Plot, Union-Productivity Partial Correlations 
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