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Better than Random: Weighted Least Squares Meta-Regression Analysis 

 
1. INTRODUCTION 

 Multiple meta-regression analysis (MRA) is widely used by systematic reviewers 

to explain the excess systematic variation often observed across research studies, whether 

experimental, quasi-experimental or observational. Hundreds of meta-regression analyses 

are conducted each year. The conventional approach to the estimation of multiple meta-

regression coefficients and their standard errors is ‘random’ or ‘mixed-effects’ MRA 

(Sharp 1998; Knapp and Hartung, 2003; Higgins and Thompson, 2004; Borenstein et al., 

2009; Moreno et al., 2009; Sterne, 2009; White, 2011). To focus on the essential 

difference between traditional, unrestricted  weighted least squares (WLS), fixed-effects 

and random/mixed-effects meta-regression, we designate any meta-regression that adds a 

second independent, random term as a ‘random-effects’ meta-regression analysis (RE-

MRA), encompassing mixed-effects. The conventional status of random-effects meta-

regression analysis is most clearly seen by the fact that only RE-MRAs are estimated in 

STATA’s meta-regression routines (Sharp 1998; Sterne, 2009; White, 2011).   

 In this paper, we investigate how well the traditional, unrestricted weighted least 

squares approach to meta-regression (WLS-MRA) summarizes estimated regression 

coefficients from observational research, explains systematic heterogeneity among 

independent research results, compares to conventional random-effects meta-regression, 

and how it can successfully correct observational research’s routine misspecification 

biases. Our simulations show that the traditional, ‘unrestricted’ weighted least squares 

MRA is as good as or better than conventional random-effects MRA in summarizing and 

correcting regression estimates. Although we report simulation results only for 

observational estimates of regression coefficients in this paper, we have reason to believe 

that our findings generalize to the meta-regression of experimental results as well 

(Stanley and Doucouliagos, 2013b).   

 Conventional practice among economists has long been to use the traditional, 

unrestricted weighted least squares meta-regression analysis (WLS-MRA) to explain and 

summarize estimated regression coefficients because it allows for both heteroscedasticity 

and excess heterogeneity (Stanley and Jarrell, 1989; Stanley and Doucouliagos, 2012). 
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One of the weaknesses of random/mixed-effects meta-regression analysis is that it 

assumes that the random-effects are independent of the model’s moderator variables.  

Otherwise, the regression estimates are known to be biased (Wooldridge, 2002; Davidson 

and MacKinnon, 2004).  For this and other reasons, Stanley and Doucouliagos (2012) 

speculate that random-effects meta-regression analysis will be more biased than 

traditional weighted least squares when the reported research literature contains selection 

for statistical significance (conventionally called, ‘publication’ or ‘small-sample’ bias).  

Unfortunately, the presence of ‘publication’ or ‘small-sample’ bias is common in most 

areas of research, not only economics (Sterling et al., 1995; Gerber et al., 2001; Gerber 

and Malhorta, 2008; Hopewell et al., 2009; Doucouliagos and Stanley, 2013). We show 

in this paper that our conjecture is correct: random-effects MRA is indeed more biased 

than WLS-MRA in the presence of publication or small-sample bias. 

 We fully acknowledge that all of these alternative meta-regression approaches: 

WLS-MRA, FE-MRA, RE-MRA and mixed-effects MRA employ weighted least squares 

and that WLS has long been used by meta-analysts: Stanley and Jarrell (1989), 

DuMouchel (1990), Raudenbush (1994), Thompson and Sharp (1999), Higgins and 

Thompson (2002), Steel and Kammeyer-Mueller (2002), Baker et al. (2009), Copas and 

Lozada (2009), and Moreno et al. (2009), to cite a few.  However, fixed-, mixed- and 

random-effects MRA restrict the traditional WLS multiplicative constant to be one; 

whereas traditional WLS does not.  To our knowledge, no meta-analyst has suggested 

that the traditional, unrestricted weighted least squares meta-regression should routinely 

replace random-, mixed-, and fixed-effects meta-regression analysis.   

The central purpose of this paper is to investigate the bias of random-effects meta-

regression analysis relative to traditional WLS meta-regression when there is publication 

selection bias.  When there are no publication or small-sample biases, our simulations 

demonstrate how WLS-MRA provides adequate estimates of meta-regression coefficients 

and their confidence intervals, comparable to what RE-MRA produces. Unfortunately, 

systematic reviewers can never be confident that there is no publication bias in any given 

area of research, because tests for publication and small-sample biases are known to have 

low power (Egger et al., 1997; Stanley, 2008).  Thus, systematic reviewers have reason to 

prefer WLS-MRA over RE-MRA in practical applications.  What is especially interesting 
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is that WLS-MRA’s improvement over RE-MRA is greatest in those exact circumstances 

for which RE-MRA is designed—large additive heterogeneity. 

In the process of documenting how the traditional unrestricted weighted least 

squares estimator is superior to conventional random-effects meta-regression, we show 

that a simple meta-regression model that uses binary dummy variables corrects for 

misspecification biases routinely found in observational research. Thus, our study 

demonstrates how a general, unrestricted weighted least squares framework can remove 

or reduce a wide variety of biases routinely found in social science research.  

 
2. GAUSS-MARKOV THEOREM AND WLS-MRA 

 
 Suppose that the reviewer wishes to summarize and explain some reported 

empirical effect, yj.  The basic form of the meta-regression model needed to explain 

variation among these reported effects is: 

     y εMβ+= ,            (1) 

where: 

y is a Lx1 vector of all comparable reported empirical effects in an empirical 
literature of L estimates. 

M is a LxK matrix of explanatory or moderator variables, the first column of 
which contains all 1s.  

β is a Kx1 vector of MRA coefficients, the first of which represents the ‘true’ 
underlying empirical effect investigated.  For this interpretation to be true, the 
moderator variables, M, need to be defined in a manner such that Mj= 1 
represents the presence of some potential bias and Mj= 0 its absence. In the 
below simulations, Mj is defined in this way.   

ε  is a Lx1 vector of residuals representing the unexplained errors of the reported 
empirical effects, and ε  ~ (0, V ). 

 
Equation (1) cannot be adequately estimated by ordinary least squares (OLS), because 

systematic reviewers almost always find large variation among the standard errors of the 

reported effects. This means that reviewers directly observe large heteroscedasticity 

among reported estimates of effects, which define the dependent variable in a meta-

regression analysis.  Thus, ε  from equation (1) cannot be assumed to be i.i.d., and OLS is 

almost never appropriate for MRA.  At a minimum, meta-analysts need to adjust for this 

heteroscedasticity, and weighted least squares are the traditional remedy.  

Weighted least squares estimates of MRA (1) are: 
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jσ  is the variance of the jth estimated effect, yj, and 2σ  is a nonzero constant, which is 

routinely estimated by the MSE when replacing β̂  in equation (1) (Greene, 1990; 

Davidson and MacKinnon, 2004).  Note that 1−Ω has 1/ 2
jσ  on the principal diagonal, 

zero elsewhere. These inverse variances are conventionally regarded as the weights in 

WLS routines and statistical packages.   

 WLS is a special case of generalized least squares (GLS) where the variance-

covariance matrix, Ω , has the above diagonal structure. Aitken (1935) generalized the 

famous Gauss-Markov theorem that proves least squares estimates are minimum variance 

within the class of unbiased linear estimators for all positive semi-definite variance-

covariance matrices (Jacquez et al., 1969; Stigler, 1986; Greene, 1990; Davidson and 

MacKinnon, 2004).  Thus, WLS will also possess these Gauss-Markov statistical 

properties when 2
jσ s are known.  Note that the WLS estimator, β̂ , is invariant to any 

nonzero 2σ . This invariance is an obvious mathematical property of the WLS formula, 

equation (2), because 2σ / 2σ =1, for all 2σ ≠ 0. In practical application, the traditional 

unrestricted WLS is calculated by substituting consistent estimates (squared standard 

errors in meta-regressions) for 2
jσ , and 2σ is automatically estimated by MSE = e

t
e/(L-

K), for e = y-M β̂ (Kmenta, 1971; Judge et al., 1982; Greene, 1990; Wooldridge, 2002; 

Davidson and MacKinnon, 2004).  In contrast, fixed-effects meta-regression restricts 2σ  

to be one by dividing the meta-regression coefficients’ standard errors by √MSE (Hedges 

and Olkin, 1985), thereby failing to make use of the WLS’s multiplicative invariance 

property.  Below, we show that there is never any statistical reason to divide by √MSE.  
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3. ACCOMMODATING HETEROGENEITY 

 
Meta-analysts in economics and the social sciences routinely observe excess 

heterogeneity.  Heterogeneity is also quite common in medical research (Turner et al., 

2012).  Because individual and social behaviors are often unique, yet conditional upon a 

legion of factors (e.g., socio-economic status, institutions, culture, framing, experience 

and history) that can rarely be fully controlled, experimentally or observationally, excess 

heterogeneity is the norm in economics and social scientific research.  For example, 

among hundreds of meta-analyses conducted in economics, none have reported a 

Cochran’s Q-test which allows the meta-analyst to accept homogeneity.  Thus, the central 

objective for the meta-regression is to explain as much of systematic heterogeneity as 

possible and to accommodate any remaining heterogeneity.   

 
3.1 Weighted Least Squares Meta-Regression 

What is not fully appreciated among meta-analysts is that traditional unrestricted 

weighted-least squares estimates, MRA model (2), automatically adjusts for 

heterogeneity or ‘over-dispersion’ by calculating 2σ  from WLS’s MSE and that the 

resilience of least squares causes the resulting WLS-MRA estimates to rival or best both 

fixed- and random-effects estimates.  As discussed above, the Gauss-Markov theorem 

proves that WLS provide unbiased and efficient estimators regardless of the amount of 

multiplicative over-dispersion. WLS-MRA estimates are invariant to the magnitude of 

known or unknown heterogeneity, and it retains all of these desirable properties even 

when a bad estimate of 2σ  is used.  In contrast, random effects are highly sensitive to the 

accuracy of the estimate of the between-study variance, τ2, and conventional estimates of 

τ2 are biased (Raudenbush, 1994; Hedges and Vevea, 1998). 

Although the ability of traditional WLS to test heterogeneity has been 

acknowledged, the traditional WLS-MRA has thus far been dismissed by meta-analysts 

(Thompson and Sharp, 1999).  Because meta-analysts view this multiplicative variance 

structure as a requirement for using WLS-MRA rather than as WLS’s resilience to 

heterogeneity, it is not highly regarded. “The rationale for using a multiplicative factor 
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for variance inflation is weak.  The idea that the variance of the estimated effect within 

each study should be multiplied by some constant has little intuitive appeal, . . . we do not 

recommend them in practice” (Thompson and Sharp, 1999, p. 2705).   

 We fully accept Thompson and Sharp’s (1999) premise that the rationale for a 

multiplicative, rather than an additive, variance structure may be weak or even incorrect; 

however, our simulations demonstrate that their recommendations do not follow even if 

the random-effects model with its additive variance is true.  In the simulations below, we 

assume that RE-MRA’s model is true and show that the traditional WLS-MRA estimator 

is unbiased and provides acceptable confidence intervals, comparable to RE-MRA.   

These simulations find that there is little practical difference between WLS- and RE-

MRA, when there is no selection for statistical significance (or publication bias).  When 

there is publication selection bias, WLS-MRA dominates the corresponding random-

effects meta-regression.  That is, WLS-MRA is less biased and more efficient (smaller 

MSE) than RE-MRA on average and in the vast majority of cases. Because systematic 

reviewers can never rule out publication bias in practice, WLS-MRA should be routinely 

employed.  Before we turn to the design of these simulations and their findings, we take a 

short detour to compare and discuss fixed- and random-effects meta-regressions.   

 
3.2 Conventional Fixed-Effects and Random-Effects Meta-Regression 

        Random-effects (or mixed-effects) MRA is the conventional meta-regression model 

for excess heterogeneity.  RE-MRA adds a second random term to MRA model (1). 

    y εMβ ++= ν ,                (3) 

 
where ν  is a Lx1 vector of random effects, assumed to be independently distributed as 

N(0, 2τ ) as well as independent of both ε  and Mβ .  2τ is the random-effects (or 

heterogeneity) variance.  Note that this RE-MRA model assumes that any excess random 

heterogeneity comes from an additive term, ν ; whereas, WLS-MRA is invariant to any 

excess multiplicative variance, 2σ . 

RE-MRA estimates of β are derived from either the method of moments or a 

maximum likelihood approach (Raudenbush, 1994).  There are several related algorithms 

that provide these RE-MRA estimates, but typically they involve a two-step process.  In 
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the first step, 2τ  is estimated, and the second-step uses this estimate of 2τ , 2τ̂ , to provide 

weights, 1/( 2
iSE + 2τ̂ ), in a restrictive ( 2σ =1) weighted least squares context 

(Raudenbush, 1994).  Our below simulations are based on Raudenbush’s (1994) iterative 

maximum likelihood algorithm. The resulting RE-MRA estimates and confidence 

intervals calculated by our simulations are identical to five or more significant digits as 

those produced by STATA’s random-effects meta-regression routine (Sharp, 1998). 

 In contrast to both RE-MRA and WLS-MRA, fixed-effects meta-regression 

assumes that there is no excess heterogeneity and constrains WLS’s common variance, 
2σ , to be equal to one.  Otherwise, FE-MRA’s model and estimated coefficients are 

identical to WLS-MRA—recall equations (1) and (2).  The only difference is that FE-

MRA further divides WLS-MRA’s standard errors by √MSE. WLS-MRA is identical to 

FE-MRA except that 2σ  is not restricted to be equal to one; hence, WLS-MRA may be 

regarded as ‘unrestricted’ weighted least squares. 

Not only is excess heterogeneity not accommodated by FE-MRA’s, it is 

forbidden.  As a result, the confidence intervals produced by FE-MRA are widely 

recognized to be too narrow if misapplied to unconditional inference—that is, inferences 

for populations that might have some characteristic(s) that differs from the population 

sampled (Hedges, 1994; Borenstein et al., 2009).  Fixed effects are, “in the strictest sense, 

limited to the factor levels represented in the sample. . . , (but) the generalizations made 

from them by researchers are typically not constrained precisely to factor levels in the 

study” (Hedges and Vevea, 1998, p. 488). The problem is that fixed-effects are often 

applied to settings for which they were not designed (i.e., unconditional inference) and 

therefore purport to be more precise than they actually are.  If one merely wishes to make 

inferences to a population identical to the one sampled, then fixed-effects’ standard errors 

and confidence intervals are correct.  However, they are not appropriate when making 

inferences to what might be found in future research or to the underlying value of the 

empirical effect in question because these might concern different conditions.   

In recognition of the severe limitation of fixed-effects, some meta-analysts 

recommend against its use (Borenstein et al., 2009), while others view it as a viable meta-

regression model (Lipsey and Wilson, 2001; Johnson and Huedo-Medina, 2012).  Our 
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simulations demonstrate that there are no circumstances for which fixed-effects have 

notably better statistic properties than traditional unrestricted WLS-MRA.  When there is 

no excess heterogeneity and the population is identical to the one sampled, FE-MRA and 

WLS-MRA produce identical estimates and the confidence intervals are practically the 

same.  Needless to say, when there is excess heterogeneity and fixed-effects are 

nonetheless inappropriately applied, WLS-MRA has clear superior coverage.   

 
4. SIMULATIONS 

Although the Gauss-Markov theorem is nearly two centuries old and weighted 

least squares are well established, WLS-MRA’s relative performance under realistic 

research conditions requires further investigation.  For one thing, RE-MRA is not a linear 

estimator, thereby negating the applicability of the Gauss-Markov theorem.  Secondly, 

the unrestricted WLS-MRA, equation (2), involves a multiplicative error variance; 

whereas our below simulations add random unexplained heterogeneity to the data 

generating process. The WLS-MRA model is intentionally mis-specified because, in 

practice, unexplained heterogeneity might well be additive.  Furthermore, it is important 

to be sure that WLS-MRA estimated coefficients will have desirable statistical properties 

even when the heterogeneity and errors are generated in any realistic manner.  This paper 

does not concern which assumption or model about the structure of heterogeneity 

variance (multiplicative or additive) is the more correct. Rather, the point to these 

simulations is to demonstrate that WLS-MRA is preferred in practical applications over 

random-effects, even when random-effects MRA is the correct model.   

 This simulation generates systematic heterogeneity as omitted-variable bias, and 

all simulated MRAs model it with a binary dummy variable (0 if the relevant explanatory 

variable is included in the primary study’s regression model; 1 if it is omitted).  Omitting 

a relevant explanatory variable is an omnipresent threat to the validity of applied 

econometrics and observational research, in general.  The resulting omitted-variable bias 

is well known and widely recognized (Judge et al., 1982; Stanley and Jarrell, 1989; 

Davidson and MacKinnon, 2004).  However, what might be in doubt is whether such a 

crude binary variable adequately corrects this bias within meta-regression.  In these 

simulations, we strive to be both realistic and challenging to the unrestricted WLS-MRA. 
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4.1 Simulation Design 

Our simulation design closely follows past simulation studies of meta-regression 

models—Stanley (2008), Stanley et al., (2010); Stanley and Doucouliagos (2013), which, 

in turn, were calibrated to mirror several published meta-analyses (Stanley, 2008).  Here, 

we generalize the past simulation design to allow for systematic heterogeneity and a 

wider range of parameters, because we wanted to be sure that we are challenging our 

preferred approach, fully.  In particular, we fill in and widen the range of random 

heterogeneity to represent the values observed in recently published meta-analyses for 

which we can calculate I2 (Higgins and Thompson, 2002)—see below for more detail. 

 Essentially, data are generated, and a regression coefficient is computed, 

representing one empirical effect reported in the research literature.  Although estimated 

regression coefficients are the empirical effects meta-analyzed in the simulations reported 

here, we have reason to believe that the same general patterns would be found if 

standardized mean differences from RCTs are used (Stanley and Doucouliagos, 2013b).  

This process of generating data and estimating the target regression coefficient is 

repeated either 20 or 80 times (the MRA sample size).    

 Next, WLS-MRA, RE-MRA and FE-MRA are applied to estimate the underlying 

‘true’ regression parameter corrected for misspecification biases that are contained in half 

of the research literature.  In practice, omitted-variable bias is an omnipresent threat to 

observational studies.  Initially, we assume that there are no publication selection biases.  

Later, we allow selection for statistical significance (publication bias) and model it using 

the selected estimate’s standard error (SEj) or variance as an additional moderator 

variable (Egger et al., 1997; Stanley and Doucouliagos, 2013a).   

 To be more detailed, the dependent variable, Zi, for the regression model 

employed by the primary researchers is generated by: 

 
   Zi = 100 + α1 X1i +α2 X2i +α3X3i + ui           .          (4) 

 
ui ~ N(0, 1002), α1 = {0, 1} and α2 = 0.5.  The empirical effect of interest is the estimate 

of α1, j1α̂ .  The correlation between Z and X1 is either 0.27 (calculated and averaged from 

10,000 replications) when α1 = 1 or zero when α1 = 0.  Recall that 0.27 represents a small 
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effect size by conventional guidelines (Cohen, 1988).  These parameters were selected to 

make it a genuine challenge to identify this small effect (ρ = 0.27) amongst large random 

and systematic heterogeneity. Furthermore, such small effects are often the norm among 

regression studies (Doucouliagos, 2011).  As routinely observed among systematic 

reviews of regression coefficients, a wide range of sample sizes are assumed to be used to 

estimate α1 in the primary literature—n = {62, 125, 250, 500, 1000}. One of two 

regression models are used to estimate α1 in the primary literature: a simple regression 

with only X1 as the independent variable and Z as the dependent variable and a second 

model that employs two independent variables, X1 and X2. 

 X2 is generated in a manner that makes it correlated with X1.  X2 is set equal to X1 

plus a N(0, 502) random disturbance.  When a relevant variable, like X2, is omitted from a 

regression but is correlated with the included independent variable, like X1, the estimated 

regression coefficient ( j1α̂ ) will be biased.  This omitted-variable bias will be α2 · 12γ ; 

where 12γ =1 is the slope coefficient of a regression of X2i on X1i.  For these simulations, 

we assume only that the reviewer can identify whether or not X2 is included in the 

primary study’s estimation model.  When X2 is omitted, Mj =1; Mj =0, otherwise.  M then 

becomes an independent, or moderator, variable in the reviewer’s meta-regression model: 

 
    yj = β0 + β1Mj + εj .                         (5) 

 
As before, yj is the ith reported effect, j1α̂ , and ε is the usual random regression 

disturbance.  β0  should be equal to the true regression coefficient, α1, if M correctly 

detects and corrects this omitted-variable bias.  MRA model (5) is then estimated using 

either fixed-effects, random-effects or traditional, unrestricted WLS with j1α̂ ’s squared 

standard error, 2
jSE , as the estimate of 2

jσ  .  Needless to say, the random-effects MRA 

adds a second random term, jν , to (5) as in equation (3). The only difference between 

WLS-MRA and FE-MRA is that FE-MRA further divides WLS-MRA’s standard errors 

by √MSE.  Simulation results for these alternative meta-regression estimation approaches 

are reported in Table 1and 2.   
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 Past simulations have found that the relative size of the unexplained heterogeneity 

is the most influential dimension (Stanley, 2008). In these simulations, unexplained 

random heterogeneity is induced by a second omitted-variable bias through X3 and 

calibrated by hσ  (Stanley, 2008; Stanley et al., 2010; Stanley and Doucouliagos, 2013a).  

2
hσ  is the variance of the regression coefficient α3 in equation (4), and the magnitude of 

α3 is generated by N(0, 2
hσ ). α3  is fixed for a given primary study but is random across 

studies.  Thus, 2
hσ = 2τ  in the conventional random-effects context. Like X2, X3 is also 

generated in a way that makes it correlated with X1, and α3  is the bias in omitting X3; 

however, X3 is an omitted variable in all of the primary studies that estimate j1α̂ , rather 

than half of them.  Because all studies omit X3, our MRA does not and cannot correct this 

second source of omitted-variable bias.  

 We choose to induce random heterogeneity through omitted-variable bias, 

because this adds a random term, α3, to the reported effects, just as modeled in the 

conventional ‘random-effects’ MRA, and allows us to easily calculate σh.  Also, we 

believe that un-modeled, omitted-variable bias is the main source of excess unexplained 

heterogeneity and selection bias in econometrics and other areas of observational 

research. Values of random heterogeneity, σh, were selected to encompass what is found 

in actual meta-analyses, as measured by I2, (Higgins and Thompson, 2002).  For example, 

among US minimum wage elasticities, I2 is 90% (Doucouliagos and Stanley, 2009), I2 is 

87% for efficiency wage elasticities (Krassoi Peach and  Stanley (2009), 93% among 

estimates of the value of statistical life (Doucouliagos, Stanley and Giles, 2012), 97% 

among the partial correlations of CEO pay and corporate performance (Doucouliagos, 

Haman and Stanley, 2012), 99.2% among the income elasticities of health care (Costa-

Font et al., 2013), and I2 is 84% among the partial correlation coefficients of UK 

minimum wage increases and employment decreases (De Linde Leonard et al., 2013).  

Needless to say, smaller values of I2 can also be found throughout the social and medical 

sciences.  However, it is our experience that I2s of 80 or 90 % are the norm.1   

                                                
1 An anonymous referee asked how common large values of heterogeneity are.  Thus, we calculated I2 
where we could: our published meta-analyses over the last 5 years and works in progress. In addition to the 
six reported above, we have completed an additional three meta-analyses.  Among test of market efficiency 
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 We report two measures of I2 in the below tables.  ‘I2’ measures the excess 

heterogeneity among estimates, j1α̂ , relative to estimated sampling error before either 

systematic heterogeneity or publication selection bias is included.  I2 is calculated 
‘empirically’ from Higgins and Thompson (2002) and averaged across 10,000 

replications.  Empirical estimates of I2 are biased upward when there is little or no excess 

heterogeneity (i.e., σh =0).  Like 2τ̂ , conventional practice is to truncate I2 at zero.  Our 

tables also report a second measure of relative heterogeneity, ‘residual I2’, which 

calculates the amount of excess heterogeneity that remains after systematic variation is 

first added then explicitly filtered by meta-regressions, equations (5) or (7).   

Table 1 reports the coverage of WLS-, FE- and RE-MRA estimates of β0    in MRA 

model (5).  Needless to say, the RE-MRA version adds a random term to equation (5), 

explicitly estimates its variance, and uses it in the weights matrix.  In our simulations, 

RE-MRA estimates are computed using Raudenbush’s (1994) iterative maximum 

likelihood algorithm.  As Raudenbush (1994) observes, estimates converge after only a 

few iterations.  To verify that our maximum likelihood algorithm produces the same RE-

MRA estimates and confidence intervals that are routinely employed by meta-analysts, 

we generated random datasets in the above manner and compare the RE-MRA estimates 

and their confidence intervals from our maximum likelihood algorithm to those 

calculated by STATA.  Because this process always produces the exact same values of 

both the estimates and their standard errors to 5 or more significant digits, we are 

confident that our simulations accurately represent RE-MRA as applied in the field.    

Lastly, we also allow publication selection bias in the simulations reported in 

Tables 3-5. When publication selection is permitted, random values of all the relevant 

variables are generated in the same way as discussed above until a statistically significant 

positive effect, j1α̂ , is generated by chance.  To conserve space, we assume that such 

selection for statistical significance occurs in half the reported empirical estimates.  For 

the other half, the first random estimate is used regardless of whether it is statistically 

significant or not.  In other papers where the focus is on the magnitude of publication 

                                                                                                                                            
in Asian-Australasian stock markets, I2 = 95%; across reported estimates of the effect of telecom 
investment on economic growth, I2 =  92%; and it is 97% among the price elasticities of alcohol demand.  
The average I2 across these nine meta-analyses is 93%.   
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bias, we vary the incidence of publication from 0 to 100% (Stanley, 2008; Stanley et al., 

2010; Stanley and Doucouliagos, 2013a).  The focus of the current investigation is not on 

the magnitude of publication bias per se, but rather the relative biases and mean square 

errors (MSE) of RE-MRA and WLS-MRA when publication bias is a genuine 

possibility.2  Thus, it is sufficient to show that WLS-MRA has smaller bias and MSE than 

RE-MRA when there is some moderate amount of publication selection.   

 
4.2 Simulation Results  

Table 1 reports the coverage percentages as well as the two relative measures of 

unexplained random heterogeneity discussed above. 95% confidence intervals are 

constructed for each replication around the MRA estimates of β0  from (5) or its random-

effects equivalent.  The proportion of the 10,000 confidence intervals randomly generated 

by these simulations that actually contain the ‘true’ value {0,1} is computed, giving the 

coverage percentages found in the last three columns of Table 1.   

 
Insert Table 1 about here 

 
First, it is clear that dividing WLS-MRA’s standard errors by √MSE is not a good 

idea—see the FE-MRA column in Table 1.  When there is no excess heterogeneity, 

WLS-MRA is as good as FE-MRA. When there is excess heterogeneity, the coverage of 

the ‘fixed-effects’ MRA is unacceptably thin.  Unfortunately, such excess heterogeneity 

is common in the social and medical sciences (Turner et al., 2012), and all tests for it are 

underpowered (Sidik and Jonkman, 2007). 

Second, WLS-MRA produces coverage rates that are comparable to RE-MRA’s 

coverage. On average, RE-MRA coverage is 0.6% closer to the nominal 95% than is 

WLS-MRA, and this difference increases to 1.4% if the  Knapp-Hartung corrections for 

RE-MRA’s confidence intervals are used (Knapp and Hartung, 2003).  However, 

ironically, the coverage rates for WLS-MRA are better than RE-MRA’s when there is 

large additive heterogeneity, the exact circumstances for which RE-MRA is designed.  

The message here is that WLS-MRA produce acceptable confidence intervals, 

                                                
2 We do, however, report the averages for the case of 100% publication bias. 
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comparable to RE-MRA, regardless of the amount of heterogeneity, and that FE-MRA’s 

confidence intervals will be unacceptable for most realistic applications.   

Lastly, the MRA dummy variable, M, succeeds in correcting omitted-variable 

bias.  The average estimate of β0  from MRA model (5) does not differ from its true value 

by more than rounding errors.  This result can be seen in Table 1 by the closeness of the 

coverage proportions to their nominal 95% level when σh = 0 and also by the biases and 

MSEs reported in Table 2.    

 
Insert Table 2 about here 

 
Table 2 reports the bias and MSE (mean square error) of these meta-regression 

methods when there is no publication selection for statistical significance, the same 

conditions reported in Table 1.  When these 10,000 replications are repeated ten times, 

the mean absolute deviation from one individual bias reported in Table 2 to another is 

approximately 0.0004—0.0001 for the MSE.  Coverage proportions vary by 0.0006 from 

one simulation of 10,000 replications to another.  The biases reported in Table 2 are 

practically nil, a bit larger than 0.1%, on average, confirming the viability of using 

dummy moderator variables, M, to remove misspecification biases. Surprisingly, the 

MSE of WLS-MRA is, on average, 38% smaller than RE-MRA’s MSE.  Taken together, 

Tables 1 and 2 demonstrate that traditional, unrestricted weighted least squares meta-

regression is at least as good as than random-effects (or mixed-effects) meta-regression.  

This finding is unexpected, because these simulations involve the exact circumstances—

random, additive heterogeneity—for which random-effects is designed to accommodate.  

Our expectations were that WLS-MRA might be superior to RE-MRA in the presence of 

publication selection bias, but not when there is no publication bias.   

The advantage of WLS-MRA over RE-MRA displayed in Table 2 is attributable 

to the highest levels of heterogeneity.  If the highest level of heterogeneity, σh = 4.0, is 

removed, both WLS- and RE-MRA have average bias = 0.001 and average MSE = 0.06, 

with RE-MRA having slightly lower bias (by 0.0002) and WLS-MRA having slightly 

lower MSE (by 0.003). We wish to make no claim that WLS-MRA is superior to RE-

MRA when there is no publication bias.  Rather our point is that these meta-regression 

approaches are practically equivalent when there is no publication selection and that both 
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have negligible bias when misspecification bias is modeled by a dummy moderator 

variable.  Recall that +1.0 is a small empirical effect (ρ=0.27); thus, +0.001 or even +0.01 

are negligible from a practice or policy perspective. Even when we look at the most 

unfavorable conditions for WLS-MRA (moderate to high heterogeneity), RE-MRA offers 

only a small, practically insignificant, improvement.  In practice, these conditions would 

be very difficult to identify because tests and measures of heterogeneity are not very 

reliable (Sidik and Jonkman, 2007; Sutton and Higgins, 2007). 

 Nonetheless, an interesting puzzle remains.  What explains the superior 

performance of WLS-MRA at high levels of heterogeneity?  Isn’t large additive 

heterogeneity the exact condition for which RE-MRA is designed?  To explain this 

puzzle, consider the expected value and variance of the estimated effects in the presence 

of omitted variable bias.  In our simulations, when X3 is an omitted variable, the bias in 

estimating α1 is α3, and these simulations generate α3 from N(0, 2
hσ ).  As a result, the 

estimate’s variance ( 2
jSE ) will contain a second additive term that depends directly on 

the amount of this random omitted variable bias, α3

2 (Kementa, 1971).  That is, the 

reported variances, 2
jSE , will be the sum of two terms: the usual regression variance (Sj

2) 

plus α3

2, which varies directly with 2
hσ . Or, 2

jSE = Sj
2  + α3

2.  As random heterogeneity gets 

larger and larger, it will gradually dominate the conventional regression variance term, Sj
2, 

because the latter does not increase with greater random heterogeneity.  For the highest 

levels of heterogeneity, variations in 2
jSE will be roughly proportional to this 

heterogeneity, α3

2, because Sj
2 and its sample variations will be relatively small. Thus, for 

large levels of heterogeneity, variances are approximately multiplicative—equation (2). 

 
Insert Figures 1 and 2 about here 

 This rough proportionality of an estimate’s variance and random heterogeneity is 

more clearly seen in Figure 1, which graphs 1,000 random primary study standard errors 

squared, against the square of the random heterogeneity.  In our simulations, we can 

directly observe the randomly generated heterogeneity.  Figure 1 plots these variances 

from our simulations’ largest heterogeneity condition, (σh=4.0; I2=98.6%).  At such high 
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levels of heterogeneity, excess heterogeneity dominates conventional sampling errors, 

and the estimate’s reported variance (‘SE-squared’) will be correlated with the random 

heterogeneity (ρ =0.5).  Figure 1 reveals a fan-shaped scatter and an approximate 

proportionality between these two variances.   Thus, for such large heterogeneity, 2
jSE is 

roughly proportional to 2τ = 2
hσ , and WLS’s multiplicative variance-covariance structure 

will be approximately correct.  On the other hand, for small heterogeneity (σh=0.125; 

I2=24.7%), there is virtually no correlation between 2
jSE  and random heterogeneity (ρ = 

0.03) because variations in conventional sampling error will dominate random 

heterogeneity– see Figure 2.  Nor is this phenomenon some eccentricity of estimated 

regression coefficients alone.  Stanley and Doucouliagos (2013b) demonstrate that 

standardized mean differences (Cohen’s d) from RCTs exhibit this same proportionality 

between 2
jSE  and random heterogeneity for large levels of heterogeneity.  

Though interesting, the above discussion of the puzzle of high heterogeneity is a 

mere distraction to our central point and its practical consequences—that WLS-MRA 

dominates RE-MRA when there is publication bias. Table 3 reports the bias and MSE 

(mean square error) of these meta-regression estimators when 50% of the estimates are 

reported only if they are statistically significant and when this publication bias is not 

explicitly accommodated by either of these meta-regression models.  In the columns 

labeled ‘Bias,’ the average MRA estimate of β0  from equation (5), or its random-effects 

equivalent, is reported.  The average biases reported in Tables 2, 3 and 4 are the absolute 

value of the difference between the average of these 10,000 simulations and the true 

effect={0,1}. 

Insert Table 3 about here 
 

Table 3 clearly reveals how publication bias can be quite large, potentially 

dominating the actual empirical effect.  As theory would suggest, this bias is especially 

large when there is large heterogeneity.  Unfortunately, such large values of I2 are found 

in economics and social science research.   When there is no genuine empirical effect, the 

appearance of empirical effects can be manufactured.  When there is a small genuine 

empirical effect, publication selection in half the studies combined with large 

heterogeneity can double the apparent effect.  This publication bias can be quite large and 
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can have important practical consequences for policy and practice.  However, the 

importance of publication bias and its effects on policy are widely reported and well 

documented throughout the literature.  Here, these biases merely serve as a baseline for 

relative comparison.   Next, we turn to our central question: will random-effects meta-

regression be more or less biased than weighted least squares meta-regression when there 

is publication selection bias? 

Table 3 demonstrates that RE-MRA is more biased and less efficient (higher 

MSE) than WLS-MRA when there is publication bias.  In all cases, WLS-MRA has 

smaller bias than random-effects, and it also has a smaller MSE in 89% of these cases.  

On average, RE-MRA’s MSE is more than twice that of WLS-MRA, and its bias is 61% 

larger.  Where the bias is largest, WLS-MRA makes its greatest relative improvement 

over RE-MRA.  Although all MRA approaches exhibit notable publication bias if there is 

selection for statistical significant results and this selection goes uncorrected, the bias and 

efficiency of WLS-MRA is much better than RE-WLS.  

Note that the relative performance of RE-MRA and WLS-MRA does not depend 

on the incidence of publication selection.  The last row of Table 3 reports the average 

values when there is 100% publication selection for statistical significance.  Tables 2-5 

do not report the bias or MSE for fixed-effects MRA because these will be identical to 

WLS-MRA.  Recall that FE-MRA and WLS-MRA differ only in how their standard 

errors are calculated.   

How can these potentially large publication biases be reduced and their practical 

consequences minimized?  Table 4 reports the results for both the traditional, unrestricted 

weighted least squares and the random-effects approaches to a multiple Egger regression 

(Egger et al., 1997).  Recall that an Egger meta-regression uses empirical effects as the 

dependent variable and their standard errors as the independent or moderator variable.   

 
    yj = β0 + β1 SEj + uj .                      (6) 

Egger et al. (1997) employ WLS and the conventional t-test of β1  as a test for the 

presence of publication bias (sometimes called the ‘funnel-asymmetry test’ or FAT), 

while Stanley (2008) uses the WLS-MRA version of equation (6) and the conventional t-

test of β0  as a test for the presence of a genuine empirical effect beyond publication bias 
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(called the ‘precision-effect test’ or PET).  Following Stanley and Doucouliagos (2012; 

2013a), Table 4 estimates β0  from the multiple FAT-PET-MRA:  

 
yj = β0 + β1 SEj + β2 Mj + uj ,                     (7) 

 
using either an unrestricted WLS or random-effects.  Needless to repeat, the latter adds a 

random-effects component to equation (7) and estimates its variance.   

 
Insert Table 4 about here 

 
 As before, where publication selection is not accommodated, traditional, 

unrestricted weighted least squares clearly dominates random effects, see Table 4.  It is 

important to recognize the large reduction of publication bias for both approaches from 

what is reported in Table 3.  On average, bias is reduced by 78% for RE-FAT-PET-MRA 

and 74% for WLS-FAT-PET-MRA.  The amount of bias remaining is practically 

negligible for WLS-FAT-PET-MRA.  Recall that a true effect of 1.0 is a practically small 

effect (ρ=.27).  When compared against one another, WLS-FAT-PET-MRA has smaller 

bias than RE-FAT-PET-MRA in 93% of the cases (see Table 4), and WLS-FAT-PET-

MRA’s average bias and MSE are notably smaller than RE-FAT-PET-MRA.   As before, 

the relative advantage of WLS-MRA over RE-MRA is not a function of the incidence of 

publication selection—see the last row of Table 4. 

But can publication bias be reduced further?  Recently, a somewhat more 

complicated, conditional meta-regression approach has been shown to reduce publication 

selection bias (Stanley and Doucouliagos, 2013a).  This new approach is a hybrid 

between the conventional Egger regression and a meta-regression that uses the estimate’s 

variance as a moderator variable in place of its standard error. 

 
    yj = β0 + β1 SE

2
j + β2 Mj + uj                         (8) 

See Stanley and Doucouliagos (2013a) for the theoretical motivation for this approach 

and its validation.  There, it is shown that MRA model (7) has the smaller bias when PET 

finds no genuine empirical effect (i.e., accept H0: β0 =0), while MRA model (8) has the 

smaller bias when PET finds a genuine empirical effect (i.e., reject H0: β0 =0). Thus, 

Stanley and Doucouliagos (2013a) recommend a conditional estimator, called ‘PET-
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PEESE.’  When the conventional t-test of H0: β0 =0 from MRA model (7) is rejected, 

MRA model (8) is used to estimate β0 ; otherwise, MRA model (7) is used to estimate β0 .   

Table 5 reports the estimates from this conditional MRA model over the same 

conditions as reflected in previous simulations and tables.  As before, the WLS approach 

has much smaller bias and MSE, and both PET-PEESE-MRAs reduce publication bias 

beyond the multiple Egger regression reported in Table 4.  Taken together, WLS-MRA is 

as good as or better than RE-MRA when there is no selection for statistical significance. 

When there is publication bias, WLS-MRA clearly dominates RE-MRA. 

 
Insert Table 5 about here 

 

5. DISCUSSION 

 What explains the success of the unrestricted weighted least squares meta-

regression approach?  Although past research has shown that random-effects weighted 

averages are more biased than fixed-effects when there is publication bias (Poole and 

Greenland, 1999; Sutton et al., 2000; Stanley, 2008; Stanley et al., 2010: Henmi and 

Copas, 2010), the high performance of the unrestricted WLS meta-regression both with 

and without selection for statistical significance is a surprise.  Certainly, the fact that the 

unrestricted WLS’s weights, 1/ 2
iSE , gives relatively more (less) weight to the most 

(least) precise estimates than does RE-MRA’s weights, 1/( 2
iSE + 2τ̂ ), explains much of 

the superior statistical performance of WLS-MRA when there is publication selection 

bias.  Nonetheless, it is surprising to learn that WLS-MRA can outperform RE-MRA 

when there is no publication selection bias, because RE-MRA’s assumption of random, 

additive heterogeneity is forced into our simulations.    

 We explain this puzzle, in part, as the approximate proportionality of reported 

estimate’s variance and random heterogeneity when there are the highest levels of 

heterogeneity, making WLS’s multiplicative variance structure approximately correct.  

Even when there is low or moderate heterogeneity, the Gauss-Markov theorem’s 

multiplicative invariance property allows WLS to accommodate heterogeneity in a way 

that is practically equivalent, in the properties of the resulting estimates, to random-

effects.  RE-MRA suffers for a further disadvantage over WLS when there exists 
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publication selection. RE-MRA assumes that the ‘random-effects’, jν , are independent of 

the moderator variables.  Yet Figure 1 reveals notable correlation between 2
jν  and 2

jSE , a 

moderator variable in FAT-PET-PEESE, when there is large heterogeneity.   

 
 

6. CONCLUSIONS 

 
The central contribution of this study is the demonstration that traditional 

unrestricted weighted least squares multiple meta-regression (WLS-MRA) provides a 

viable practical alternative to random-effects meta-regression (RE-MRA), one that 

dominates RE-MRA in those exact circumstances for which RE-MRA is designed (large 

additive heterogeneity).  When there is no publication selection bias, these two 

approaches are practically equivalent with the edge going to WLS-MRA if the excess 

heterogeneity is especially large. More importantly, when there is selection for statistical 

significance, WLS-MRA clearly dominates RE-MRA. Whether or not publication 

selection bias is explicitly modeled by meta-regression, the bias and MSE of unrestricted 

weighted least squares meta-regression is notably smaller than random-effects meta-

regression. Here too, ironically, the relative performance of WLS-MRA is best when 

there is large additive heterogeneity.  Thus, our recommendation is that WLS-MRA 

should be adopted as the conventional approach for meta-regression, especially in the 

social sciences where high levels of heterogeneity are the norm.  

 Granted that RE-MRA is often adequate when publication selection bias can be 

ruled out; this is almost never possible in actual meta-analysis practice.  Publication 

selection bias has been found to be quite common and tests for its presence have low 

power (e.g., Egger et al., 1997; Stanley, 2008).  Thus, prudence requires that systematic 

reviewers treat all areas of research as if they had publication bias.  When reviewers fail 

to do so and there is publication selection bias, our simulations show that RE-MRA has 

much larger biases than WLS-MRA and more than double the MSE.   

This study makes further contributions to our understanding of meta-regression.  

It validates the multiple meta-regression model advanced by Stanley and Doucouliagos 

(2013a, eq. 10) and its ability to correct omnipresent misspecification biases and 

simultaneously accommodate publication bias.  Simple binary dummy variables for the 
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presence of possible biases as moderator variables in a MRA serves as a viable filter for 

these potential sources of contamination to scientific inference.   

Lastly, this study reveals that it is never advisable to divide the standard errors of 

meta-regression coefficients produced by conventional WLS statistical packages by the 

square root of MSE, as has often been recommended (Hedges and Olkin, 1985; Lipsey 

and Wilson, 2001; Konstantopoulos and Hedges, 2004; Johnson and Huedo-Medina, 

2012). Even when applied to conditional inferences and all characteristics are exactly the 

same as current research, not dividing by √MSE (WLS-MRA) produces CIs as good as 

fixed-effects (FE-WLS).  If FE-MRA is misapplied to any other case or should there be 

unexpected heterogeneity, WLS-MRA’s CIs are much better.  Thus, in practical 

application, WLS-MRA is preferable to both fixed- and random-effects meta-regression.  

Its statistical properties are practically equivalent to these conventional meta-regression 

models when these models are true.  However, if there is excess heterogeneity and a 

fixed-effects meta-regression is used or if there is publication bias and random-effects is 

used, WLS-MRA is demonstrably better.  Unfortunately in practice, neither excess 

heterogeneity nor publication bias can be ruled out because tests of excess heterogeneity 

and publication biases are both known to have low power.  Thus, caution favors WLS-

MRA in all practical applications.  There is nothing of practical consequence to lose but 

much to gain in employing WLS-MRA.   

Nonetheless, a note of caution is warranted.  Although our simulations employ a 

wide range of the relevant parameters, there might be special circumstances that arise for 

particular areas of research that might alter the relative performance of these meta-

regression methods.  Also, the real world is likely to contain more complications than 

those few that we have simulated.  The complex interactions of several such 

complications might also affect relative performances.  Lastly, our simulations are based 

on regression estimates. Although we have reason to believe that our findings will apply 

to RCTs (Stanley and Doucouliagos, 2013b), further research is needed.  

 

REFERENCES 

Aitken, A.C. 1935. On least squares and linear combinations of observations. 

Proceedings of the Royal Society of Edinburgh 55: 42–48. 



 22 

Baker, W.L., White, C.M., Cappelleri, J.C., Kluger, J., and Coleman, C.I. 2009. 

Understanding heterogeneity in meta-analysis: the role of meta-regression. The 

International Journal of Clinical Practice 63: 1426-1434. 

Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. 2009. Introduction to 

Meta-Analysis, Chichester: John Wiley and Sons. 

Cohen, J. 1988. Statistical Power Analysis in the Behavioral Sciences, 2nd ed. Hillsdale: 

Erlbaum. 

Copas, J.B. and Lozada, C. 2009. The radial plot in meta analysis: Approximations and 

applications. Journal of the Royal Statistical Society: Series C (Applied Statistics), 

58: 329-344. 

Costa-Font, J., McGuire, A. and Stanley, T.D. 2013. Publication selection in health 

policy research: The winner’s curse hypothesis. Health Policy, 109: 78– 87.  

Davidson, R. and MacKinnon, J.G. 2004. Econometric theory and methods. Oxford:  

Oxford University Press.  

De Linde Leonard, M., Stanley, T. D and Doucouliagos, H(C). 2013. Does the UK 

minimum wage reduce employment? A meta-regression analysis. British Journal 

of Industrial Relations. DOI: 10.1111/bjir.12031. 

Doucouliagos H(C). 2011. How Large is Large? Preliminary and relative guidelines for 

interpreting partial correlations in economics. SWP, Economics Series 2011-5, 

Deakin University. 

Doucouliagos, C(H), Haman, J. and  Stanley, T.D. 2012. Pay for performance and 

corporate governance reform.  Industrial Relations, 51: 670- 703.  

Doucouliagos, C(H) and Stanley, T.D. 2009. Publication selection bias in minimum-wage 

research? A meta-regression analysis, British Journal of Industrial Relations 47: 

406-29.   

Doucouliagos, C(H) and Stanley, T.D. 2013. Theory competition and selectivity: Are all 

economic facts greatly exaggerated? Journal of Economic Surveys 27: 316-39. 

Doucouliagos, C(H), Stanley, T.D., and Giles, M. 2012. Are estimates of the value of a 

statistical life exaggerated? Journal of Health Economics 31: 197-206. 

DuMouchel, W. 1990. Bayesian meta-analysis, in Berry, D. (ed), Statistical Methodology 

in the Pharmaceutical Sciences, Marcel Dekker, New York, pp. 509-529. 



 23 

Egger, M., Smith, GD., Scheider, M., and Minder, C. 1997. Bias in meta-analysis 

detected by a simple, graphical test. British Medical Journal 316: 629-34. 

Gerber, A.S., Green, D.P. and Nickerson, D. 2001. Testing for publication bias in 

political science, Political Analysis, 9: 385-92. 

Gerber, A.S. and Malhorta, N.  2008. Publication bias in empirical sociological research, 

Sociological Methods and Research, 25: 1-28. 

Greene, W.E. 1990. Econometric Analysis, New York: Macmillan. 

Hedges, L.V and Olkin, I. 1985. Statistical Methods for Meta-Analysis. Orlando: 

Academic Press. 

Hedges, L.V. 1994. Fixed effects models in H. Cooper and L.V. Hedges (eds.) The 

Handbook of Research Synthesis. New York: Russell Sage, 285-299. 

Hedges, L.V. and Vevea, J.L. 1998. Fixed- and random-effects models in meta-analysis. 

Psychological Methods 3: 486-504. 

Henmi, M. and Copas, J.B. Confidence intervals for random effects meta-analysis and 

robustness to publication bias. Statistics in Medicine 2010; 29: 2969-2983. 

Higgins, J.P.T and Thompson, S.G. 2002. Quantifying heterogeneity in meta-analysis. 

Statistics in Medicine 21: 1539-1558. 

Higgins, J.P.T, and Thompson, S.G. 2004. Controlling the risk of spurious findings from 

meta-regression. Statistics in Medicine 23:  1663-1682. 

Hopewell, S., Loudon, K., Clarke, M.J, Oxman, A.D. and Dickersin, K. 2009. Publication 

bias in clinical trials due to statistical significance or direction of trial result. 

Cochrane Review, Issue 1. Available at http://www.thecochranelibrary.com. 

Jacquez, J.A.,  Mather, F. J., and. Crawford, C. R. 1968. Linear regression with non-

constant, unknown error variances: Sampling experiments with least squares, 

weighted least squares and maximum likelihood estimators. Biometrics 24: 607-

626. 

Johnson, B.T. and Huedo-Medina, T.B. 2012. Depicting estimates using the intercept in 

meta-regression models: The moving constant technique. Research Methods 

Synthesis, 2: 204-20.   

Judge, G.G., Hill, R.C., Griffiths, W., Lutkepohl, H. and Lee, T.C. 1982. Introduction to 

the Theory and Practice of Econometrics. John Wiley and Sons: New York. 



 24 

Kmenta, J. 1971. Elements of Econometrics, New York: Macmillan. 

Knapp, G., and J. Hartung. 2003. Improved tests for a random effects meta-regression 

with a single covariate. Statistics in Medicine 22:  2693-2710 

Konstantopoulos, S. and Hedges, L.V. 2004. Meta-analysis in D. Kaplan (ed.) 

Quantitative methodology for the social sciences.  Sage Publications: Thousand Oaks: 

pp. 281-295. 

Krassoi Peach, E. and T. D. Stanley. 2009. Efficiency wages, productivity and 

simultaneity: A meta-regression analysis,” Journal of Labor Research, 30: 262-8. 

Lipsey, M.W. and Wilson, D.B. 2001. Practical Meta-Analysis, Sage Publications: 

Thousand Oaks. 

Moreno, S.G, Sutton, A.J, Ades, A.E, Stanley, T.D, Abrams, K.R, Peters, J.L, Cooper, 

N.J. 2009. Assessment of regression-based methods to adjust for publication bias 

through a comprehensive simulation study. BMC Medical Research Methodology 

9:2. http://www.biomedcentral.com/1471-2288/9/2. 

Raudenbush, S.W. 1994. Random effects models. In H. Cooper and L.V. Hedges (eds.) 

The Handbook of Research Synthesis. New York: Russell Sage, pp. 301-321. 

Sharp, S. 1998. sbe23: Meta-analysis regression. Stata Technical Bulletin 42: 16-22. 

Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 148-155. College Station, 

TX: Stata Press. 

Stanley, T.D. 2008. Meta-regression methods for detecting and estimating empirical 

effect in the presence of publication selection. Oxford Bulletin of Economics and 

Statistics 70:103-27.  

Stanley, T.D. and Doucouliagos, H(C). 2012. Meta-Regression Analysis in Economics 

and Business, Oxford: Routledge, 2012. 

Stanley, T.D., Doucouliagos H(C). 2013a. Meta-regression approximations to reduce 

publication selection bias. Review Synthesis Methods.  

http://onlinelibrary.wiley.com/doi/10.1002/jrsm.1095/pdf  

Stanley, T.D., Doucouliagos H(C). 2013b. Neither fixed nor random: Weighted least 

squares meta-regression analysis. SWP, Economics Series 2013-1, Deakin 

University. 



 25 

Stanley, T.D. and Jarrell, S.B. 1989. Meta-regression analysis: A quantitative method of 

literature surveys, Journal of Economic Surveys 3: 161-70. 

Stanley T.D., Jarrell, S.B. and Doucouliagos, H(C). 2010. Could it be better to discard 

90% of the data? A statistical paradox. American Statistician 64:70-77.   

Steel, P. & Kammeyer-Mueller, J. 2002. Comparing meta-analytic moderator search 

techniques under realistic conditions. Journal of Applied Psychology, 87: 96-111. 

Sterling, T.D., Rosenbaum, W.L. and Weinkam, J.J. 1995. Publication decisions revisited: 

The effect of the outcome of statistical tests on the decision to publish and vice 

versa, American Statistician, 49: 108-12.   

Sterne, J.A. C. 2009.  Meta-Analysis in Stata: An Updated Collection from the Stata 

Journal.  College Station, TX: Stata Press. 

Stigler, S.M. 1986. The History of Statistics. Cambridge, MA: Belknap Press.   

Sutton, A.J., Song, F., Gilbody, S.M., Abrams, K.R. 2000. Modelling publication bias in 

meta-analysis: a review. Statistical Methods in Medical Research 9:421-445. 

Poole C., Greenland S. 1999. Random-effects meta-analyses are not always conservative. 

American Journal of Epidemiology, 150:469-475. 

Sidik, K. and Jonkman, J.N. 2007. A comparison of heterogeneity variance estimators in 

combining results of studies, Statistics in Medicine, 26: 1964–81. 

Sutton, A.J and Higgins, J.P.T. 2007. Recent developments in meta-analysis, Statistics in 

Medicine, 27:625–50. 

Thompson, S.G. and Sharp, S.J. 1999. Explaining heterogeneity in meta-analysis: A 

comparison of methods. Statistics in Medicine 18: 2693-2708. 

Turner, R.M., Davy, J., Clarke, M.J., Thompson, S.G. and Higgins, J.P.T 2012. 

Predicting the extent of heterogeneity in meta-analysis, using empirical data from 

the Cochrane Database of Systematic Reviews. International Journal of 

Epidemiology 41: 818-27. 

White, I.R. 2011. Multivariate random-effects meta-regression: updates to mvmeta. Stata 

Journal, 11: 255-270. 

Wooldridge, JM. 2002. Econometric Analysis of Cross Section and Panel Data. 

Cambridge: MIT Press 



 26 

Table 1: Coverage Percentage of FE-, RE-, and WLS-MRA (nominal level = .95) 
MRA 

Sample Size 
σh, Excess 

Heterogeneity  
True 

Effect 
I2 Residual 

I2 
FE-MRA RE-MRA WLS-MRA 

20 0 0 .0948 .0981 .9489 .9544 .9505 
20 0.125 0 .2433 .2540 .8769 .9218 .9350 
20 0.25 0 .6014 .5495 .7067 .9082 .9079 
20 0.5 0 .8503 .8201 .4740 .9191 .9000 
20 1.0 0 .9465 .9347 .3088 .9254 .9110 
20 2.0 0 .9761 .9716 .2277 .9265 .9339 
20 4.0 0 .9858 .9833 .1909 .9233 .9464 
80 0 0 .0936 .0595 .9495 .9553 .9525 
80 0.125 0 .2469 .2814 .8741 .9429 .9350 
80 0.25 0 .6011 .6067 .7007 .9371 .9058 
80 0.5 0 .8493 .8470 .4769 .9495 .9079 
80 1.0 0 .9465 .9437 .3173 .9433 .9167 
80 2.0 0 .9761 .9740 .2384 .9460 .9440 
80 4.0 0 .9858 .9842 .2047 .9472 .9528 
20 0 1 .0593 .0969 .9545 .9603 .9531 
20 0.125 1 .3186 .2486 .8738 .9187 .9278 
20 0.25 1 .6465 .5447 .7070 .8996 .9064 
20 0.5 1 .8687 .8207 .4688 .9183 .8996 
20 1.0 1 .9517 .9356 .3125 .9220 .9119 
20 2.0 1 .9777 .9715 .2301 .9227 .9378 
20 4.0 1 .9863 .9832 .1851 .9252 .9455 
80 0 1 .0589 .0594 .9532 .9568 .9532 
80 0.125 1 .3179 .2808 .8704 .9382 .9282 
80 0.25 1 .6471 .6055 .7040 .9444 .9138 
80 0.5 1 .8683 .8479 .4765 .9460 .9049 
80 1.0 1 .9517 .9436 .3153 .9427 .9240 
80 2.0 1 .9777 .9740 .2364 .9468 .9393 
80 4.0 1 .9863 .9842 .1947 .9436 .9566 

Average .5349 .9352 .9286 
Notes: FE-MRA, RE-MRA and WLS-MRA refer to the fixed-effects, random-effects and unrestricted 
weighted least square meta-regression estimates, respectively, of β0   in MRA model (5). Coverage rates of 
these estimates are reported in the last three columns.  σh is the standard deviation of random excess 
additive heterogeneity, υi, in equation (3). I2 is the percent of the total variation among the empirical effects 
that is attributable to heterogeneity when there is no publication bias or systematic heterogeneity; that is, I2 

measures only the random excess heterogeneity relative to sampling error.  Residual I2 measures the excess 
heterogeneity that remains after MRA model (5) accounts for systematic heterogeneity. All of these 
measures are calculated empirically for each replication and averaged across 10,000 replications.  
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Table 2: Bias and MSE of RE- and WLS-MRA 
MRA 

Sample Size 
σh, Excess 

Heterogeneity  
True 

Effect 
I2 Residual 

I2 
RE-MRA 

|Bias| 
WLS-MRA 

|Bias| 
RE-MRA 

MSE 
WLS-

MRA MSE 
20 0 0 .0948 .0981 .00059 .00041 .00554 .00549 
20 0.125 0 .2433 .2540 .00105 .00124 .00829 .00845 
20 0.25 0 .6014 .5495 .00091 .00157 .01498 .01687 
20 0.5 0 .8503 .8201 .00085 .00031 .03555 .04661 
20 1.0 0 .9465 .9347 .00087 .00282 .11340 .13435 
20 2.0 0 .9761 .9716 .00157 .00014 .40591 .35193 
20 4.0 0 .9858 .9833 .01341 .00148 1.62793 .88102 
80 0 0 .0936 .0595 .00048 .00051 .00110 .00109 
80 0.125 0 .2469 .2814 .00059 .00040 .00173 .00179 
80 0.25 0 .6011 .6067 .00029 .00021 .00331 .00386 
80 0.5 0 .8493 .8470 .00030 .00077 .00833 .01066 
80 1.0 0 .9465 .9437 .00023 .00031 .02669 .02919 
80 2.0 0 .9761 .9740 .00012 .00099 .09887 .06928 
80 4.0 0 .9858 .9842 .00240 .00203 .38644 .15535 
20 0 1 .0593 .0969 .00046 .00042 .00564 .00558 
20 0.125 1 .3186 .2486 .00186 .00172 .00825 .00837 
20 0.25 1 .6465 .5447 .00147 .00164 .01487 .01706 
20 0.5 1 .8687 .8207 .00068 .00107 .03607 .04736 
20 1.0 1 .9517 .9356 .00118 .00358 .11352 .13372 
20 2.0 1 .9777 .9715 .00075 .00247 .39659 .33989 
20 4.0 1 .9863 .9832 .01035 .01111 1.61637 .83945 
80 0 1 .0589 .0594 .00067 .00067 .00110 .00109 
80 0.125 1 .3179 .2808 .00013 .00013 .00172 .00177 
80 0.25 1 .6471 .6055 .00068 .00060 .00333 .00389 
80 0.5 1 .8683 .8479 .00009 .00048 .00822 .01035 
80 1.0 1 .9517 .9436 .00012 .00063 .02720 .02953 
80 2.0 1 .9777 .9740 .00163 .00005 .09808 .06986 
80 4.0 1 .9863 .9842 .00195 .00040 .38633 .15414 

Average .00163 .00136 .19483 .12064 
Notes: RE-MRA and WLS-MRA refer to the random-effects and unrestricted weighted least square meta-
regression estimates, respectively, of β0   in MRA model (5).  Bias and MSE of these estimates are reported 
in the last four columns. σh is the standard deviation of random excess additive heterogeneity, υi.  I2 is the 
percent of the total variation among the empirical effects that is attributable to heterogeneity when there is 
no publication bias or systematic heterogeneity; that is, I2 measures only the random excess heterogeneity 
relative to sampling error.  Residual I2 measures the excess heterogeneity that remains after MRA model 
(5) accounts for systematic heterogeneity. All of these statistical measures are calculated empirically for 
each replication and averaged across 10,000 replications.  
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Table 3: Bias and MSE of RE- and WLS-MRA with 50% Publication Selection Bias 
MRA 

Sample Size 
σh, Excess 

Heterogeneity  
True 

Effect 
I2 Residual 

I2 
RE-MRA 

|Bias| 
WLS-MRA 

|Bias| 
RE-MRA 

MSE 
WLS-

MRA MSE 
20 0 0 .1689 .0893 .0348 .0328 .0151 .0147 
20 0.125 0 .3241 .1515 .0581 .0510 .0218 .0209 
20 0.25 0 .5697 .5036 .1140 .0957 .0414 .0397 
20 0.5 0 .8102 .7944 .2367 .1964 .1084 .1035 
20 1.0 0 .9264 .9217 .4510 .3470 .3259 .2677 
20 2.0 0 .9670 .9644 .8138 .5692 1.0391 .6824 
20 4.0 0 .9809 .9786 1.5212 .8595 3.6524 1.6393 
80 0 0 .1551 .0649 .0361 .0345 .0039 .0037 
80 0.125 0 .3589 .2815 .0668 .0593 .0085 .0075 
80 0.25 0 .6184 .5924 .1322 .1148 .0237 .0200 
80 0.5 0 .8372 .8315 .2659 .2250 .0824 .0643 
80 1.0 0 .9362 .9345 .4900 .3891 .2687 .1815 
80 2.0 0 .9701 .9689 .8939 .6092 .8868 .4365 
80 4.0 0 .9818 .9806 1.6566 .8880 3.0617 .9305 
20 0 1 .0825 .0662 .0135 .0128 .0056 .0056 
20 0.125 1 .2358 .1096 .0168 .0129 .0083 .0085 
20 0.25 1 .5325 .4969 .0350 .0221 .0155 .0171 
20 0.5 1 .8083 .7968 .0916 .0583 .0412 .0477 
20 1.0 1 .9255 .9216 .2415 .1669 .1567 .1483 
20 2.0 1 .9666 .9642 .5566 .3541 .6540 .4317 
20 4.0 1 .9806 .9785 1.2326 .6554 2.8299 1.1672 
80 0 1 .0450 .0374 .0101 .0096 .0012 .0012 
80 0.125 1 .2591 .2422 .0158 .0115 .0020 .0019 
80 0.25 1 .5926 .5847 .0314 .0172 .0042 .0041 
80 0.5 1 .8364 .8338 .0940 .0570 .0163 .0133 
80 1.0 1 .9349 .9337 .2564 .1740 .0886 .0559 
80 2.0 1 .9695 .9685 .6142 .3756 .4553 .1978 
80 4.0 1 .9817 .9805 1.3571 .6591 2.1485 .5624 

Average .4049 .2521 .5703 .2527 
Average  for 100 % Publication Selection Bias .9649 .6536 2.0600 .8625 

Notes: RE-MRA and WLS-MRA refer to the random-effects and unrestricted weighted least square meta-
regression estimates, respectively, of β0   in MRA model (5).  Bias and MSE of these estimates are reported 
in the last four columns. σh is the standard deviation of random excess additive heterogeneity, υi.  I2 is the 
percent of the total variation among the empirical effects that is attributable to heterogeneity when there is 
no publication bias or systematic heterogeneity; that is, I2 measures only the random excess heterogeneity 
relative to sampling error.  Residual I2 measures the excess heterogeneity that remains after MRA model 
(5) accounts for systematic heterogeneity. All of these statistical measures are calculated empirically for 
each replication and averaged across 10,000 replications.  
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Table 4: Bias and MSE of RE- and WLS-FAT-PET-MRA with 50% Publication Bias 
Sample 

Size 
σh, Excess 

Heterogeneity  
True 

Effect 
I2 Residual 

I2 
RE-MRA 

|Bias| 
WLS-MRA 

|Bias| 
RE-MRA 

MSE 
WLS-

MRA MSE 
20 0 0 .0948 .0893 .16575 .16364 .05218 .05157 
20 0.125 0 .2433 .1515 .15454 .14634 .06086 .05960 
20 0.25 0 .6014 .5036 .10523 .08881 .07024 .07462 
20 0.5 0 .8503 .7944 .01049 .00049 .11731 .14752 
20 1.0 0 .9465 .9217 .08977 .07918 .32996 .35647 
20 2.0 0 .9761 .9644 .11570 .06047 1.00564 .84226 
20 4.0 0 .9858 .9786 .19965 .03766 3.02407 1.84687 
80 0 0 .0936 .0649 .14279 .14135 .02492 .02454 
80 0.125 0 .2469 .2815 .12187 .11082 .02212 .01996 
80 0.25 0 .6011 .5924 .06794 .04757 .01648 .01601 
80 0.5 0 .8493 .8315 .04014 .05133 .02536 .03112 
80 1.0 0 .9465 .9345 .14829 .13834 .08918 .08054 
80 2.0 0 .9761 .9689 .21051 .13721 .26245 .14630 
80 4.0 0 .9858 .9806 .38580 .06001 .84128 .25204 
20 0 1 .0593 .0662 .02702 .02664 .01722 .01720 
20 0.125 1 .3186 .1096 .03110 .02868 .02553 .02607 
20 0.25 1 .6465 .4969 .03162 .02711 .04590 .05264 
20 0.5 1 .8687 .7968 .02446 .02144 .10850 .13508 
20 1.0 1 .9517 .9216 .01027 .00171 .30811 .33235 
20 2.0 1 .9777 .9642 .01052 .04896 .97668 .75452 
20 4.0 1 .9863 .9785 .05311 .16689 2.87638 1.60977 
80 0 1 .0589 .0374 .02505 .02471 .00391 .00390 
80 0.125 1 .3179 .2422 .02933 .02690 .00602 .00611 
80 0.25 1 .6471 .5847 .03398 .02921 .01039 .01168 
80 0.5 1 .8683 .8338 .02473 .02216 .02287 .02753 
80 1.0 1 .9517 .9337 .01618 .00175 .06726 .06377 
80 2.0 1 .9777 .9685 .04481 .03268 .22621 .12240 
80 4.0 1 .9863 .9805 .21000 .11280 .70017 .23085 

Average .09038 .06553 .40490 .26226 
Average  for 100 % Publication Selection Bias .3078 .1714 .3108 .2030 

Notes: RE-MRA and WLS-MRA refer to the random-effects and unrestricted weighted least square meta-
regression estimates, respectively, of β0   in the multiple MRA model (7).  Bias and MSE of these estimates 
are reported in the last four columns. σh is the standard deviation of random excess additive heterogeneity, 
υi.  I2 is the percent of the total variation among the empirical effects that is attributable to heterogeneity 
when there is no publication bias or systematic heterogeneity; that is, I2 measures only the random excess 
heterogeneity relative to sampling error.  Residual I2 measures the excess heterogeneity that remains after 
MRA model (7) accounts for publication bias and systematic heterogeneity. All of these statistical 
measures are calculated empirically for each replication and averaged across 10,000 replications.  
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Table 5: Bias and MSE of RE- and PET-PESSE-MRA with 50% Publication Bias 
Sample 

Size 
Excess 

Heterogeneity (σh) 
True 

Effect 
I2 RE-MRA 

|Bias| 
WLS-MRA 

|Bias| 
RE-MRA 

MSE 
WLS-MRA 

MSE 
20 0 0 .0948 .0665 .0646 .0287 .0285 
20 0.125 0 .2433 .0598 .0518 .0383 .0384 
20 0.25 0 .6014 .0437 .0256 .0598 .0670 
20 0.5 0 .8503 .0018 .0157 .1204 .1548 
20 1.0 0 .9465 .0785 .0709 .3322 .3790 
20 2.0 0 .9761 .1020 .0652 1.0227 .8587 
20 4.0 0 .9858 .1365 .0621 3.0835 1.8331 
80 0 0 .0936 .0538 .0522 .0074 .0073 
80 0.125 0 .2469 .0412 .0305 .0088 .0084 
80 0.25 0 .6011 .0193 .0061 .0124 .0143 
80 0.5 0 .8493 .0426 .0655 .0275 .0361 
80 1.0 0 .9465 .1448 .1330 .0900 .0858 
80 2.0 0 .9761 .2079 .1360 .2650 .1493 
80 4.0 0 .9858 .3579 .0545 .8183 .2604 
20 0 1 .0593 .0207 .0245 .0175 .0141 
20 0.125 1 .3186 .0204 .0263 .0258 .0231 
20 0.25 1 .6465 .0143 .0200 .0436 .0468 
20 0.5 1 .8687 .0066 .0023 .1043 .1298 
20 1.0 1 .9517 .0302 .0182 .3158 .3554 
20 2.0 1 .9777 .0087 .0297 .9750 .7608 
20 4.0 1 .9863 .0113 .1646 2.9422 1.6443 
80 0 1 .0589 .0200 .0038 .0038 .0015 
80 0.125 1 .3179 .0195 .0021 .0055 .0024 
80 0.25 1 .6471 .0198 .0054 .0096 .0071 
80 0.5 1 .8683 .0060 .0061 .0230 .0246 
80 1.0 1 .9517 .0496 .0322 .0690 .0644 
80 2.0 1 .9777 .0567 .0072 .2208 .1226 
80 4.0 1 .9863 .1672 .1132 .7076 .2314 

Average .0646 .0460 .4064 .2625 
Notes: RE-MRA and WLS-MRA refer to the random-effects and unrestricted weighted least square meta-
regression estimates, respectively, of β0   in multiple MRA model (7) or multiple MRA model (8), 
conditional on whether H0: β0 =0  is rejected.  Bias and MSE of these estimates are reported in the last four 
columns. σh is the standard deviation of random additive heterogeneity, υi.  I2 is the percent of the total 
variation among the empirical effects that is attributable to heterogeneity when there is no publication bias 
or systematic heterogeneity; that is, I2 measures only the random excess heterogeneity relative to sampling 
error.  All of these statistical measures are calculated empirically for each replication and averaged across 
10,000 replications.  
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Figure 1: Plot of Estimated Variances ( 2
iSE ) vs. Heterogeneity Variances; σh=4; I2=98.6% 
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Figure 2: Plot of Estimated Variances ( 2
iSE ) vs. Heterogeneity Variances; σh=.125; I2=24.7% 
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