https://www.deakin.edu.au/__data/assets/image/0007/2348755/31106_master-of-data-science-professional_hero.jpg

Master of Data Science (Professional)

Postgraduate coursework

Become a data specialist capable of using data to form insights, support decision making and create a competitive advantage in the business world.

Key facts

Duration

2 years full-time or part-time equivalent

Key dates

Direct applications to Deakin for Trimester 1 2025 close 16 February 2025

Current Deakin Students

To access your official course details for the year you started your degree, please visit the handbook

Course overview

The sheer volume and complexity of data available to businesses today presents challenges tomorrow's graduates must be ready to solve. Modern organisations are placing increasing emphasis on the use of data to inform day-to-day operations and long-term strategic decisions. You will explore the various origins of data and the methods to manage, organise and manipulate data within regulatory, ethical and security constraints.

Develop specialised skills in categorising and transferring raw data into meaningful information for the benefit of prediction and robust decision-making. You will gain the technical skills to harness the power of data through artificial intelligence and machine learning, developing innovative solutions to the challenges being faced by industry and governments. With a growing demand for data specialists in every sector, you will be equipped with the skills to optimise performance and add a competitive advantage.

Want to take your career to the next level with specialised study?

The Master of Data Science (Professional) builds on the specialised skills from the Master of Data Science, offering you the chance to engage in industry-based learning or a research project supervised by our internationally recognised staff.

You will also have the opportunity to hone your skills in a specialisation of your choosing, with options such as cyber security, blockchain and software development, networking and cloud technologies, AI and more.

You will develop expert knowledge of the technical aspects of data science as well as in-depth skills in your chosen area of specialisation.

Read More

Course information

Award granted
Master of Data Science (Professional)
Year

2025 course information

Deakin code
S770
CRICOS code?
107030E Burwood (Melbourne)
Level
Higher Degree Coursework (Masters and Doctorates)
Australian Qualifications Framework (AQF) recognition

The award conferred upon completion is recognised in the Australian Qualifications Framework at Level 9

Course structure

To complete the Master of Data Science (Professional), students must pass 16 credit points. 

The course is structured in 4 parts:

  • Part A: Fundamental data science studies (4 credit points)
  • Part B: Mastery data science studies (4 credit points) 
  • Part C: Specialisation (4 credit points) or course elective units (4 credit points)
  • Part D: Professional studies (4 credit points).

The 4 parts comprise the following:

  • DAI001 Academic Integrity and Respect at Deakin Module (0-credit-point compulsory unit)
  • 8 credit points of core units
  • a 4 credit point specialisation, or 4 credit points of course electives (level 7 SIT or MIS-coded units) (excluding SIT771, SIT772, SIT773 and SIT774)
  • 4 credit points of professional studies units.

Students are required to meet the University's academic progress and conduct requirements.

8

Core units

4

Specialistion/course elective units

4

Professional units

16

Total

Part A: Fundamental Data Science studies

  • Academic Integrity and Respect at Deakin (0 credit points)
  • Real World Analytics
  • Data Wrangling
  • Mathematics for Artificial Intelligence
  • Machine Learning
  • Part B: Mastery Data Science studies

  • Statistical Data Analysis
  • Modern Data Science
  • Bayesian Learning and Graphical Models
  • Deep Learning
  • Part C: Specialisation or Course elective units

    A 4 credit point specialisation or 4 level 7 SIT or MIS-coded elective units (excluding SIT771, SIT772, SIT773 and SIT774).

    Refer to the details of each specialisation for availability.

    Part D: Professional studies

    Team Project

  • Professional Practice in Information Technology
  • Team Project (A) - Project Management and Practices
  • Team Project (B) - Execution and Delivery
  • 1 level 7 SIT or MIS-coded elective (1 credit point)~

    OR

    Professional Practice

  • Career Tools for Employability (0 credit points)
  • Professional Practice in Information Technology
  • Team Project (A) - Project Management and Practices
  • Professional Practice (2 credit points)*
  • OR

    Research Project^

  • Professional Practice in Information Technology
  • Team Project (A) - Project Management and Practices
  • Plus 1 unit (2 credit points) from the following:

  • Research Techniques and Applications (2 credit points)+
  • Minor Thesis (2 credit points)+
  • *Students undertaking this unit must have successfully completed STP710 Career Tools for Employability (0-credit point unit)

    ~ excluding SIT771, SIT772, SIT773 and SIT774

    + Entry is subject to specific unit entry requirements.

    ^Students interested in pursuing a Higher Degree by Research (HDR), including a Masters by Research or PhD are encouraged to undertake the Professional Studies – Research Project pathway. High achieving students with a particular interest in research should also consider undertaking either the Research Training in Information Technology specialisation or additional research units as electives (e.g. SIT724, SIT746 and/or SIT747). Students are encouraged to contact Student Central and speak to a course advisor if they are interested in pursuing this option.

    Intakes by location

    The availability of a course varies across locations and intakes. This means that a course offered in Trimester 1 may not be offered in the same location for Trimester 2 or 3. Check each intake for up-to-date information on when and where you can commence your studies.

    Trimester 1 - March

    • Start date: March
    • Available at:
      • Burwood (Melbourne)
      • Online

    Trimester 2 - July

    • Start date: July
    • Available at:
      • Burwood (Melbourne)
      • Online

    Additional course information

    Course duration

    Course duration may be affected by delays in completing course requirements, such as accessing or completing work placements.

    Mandatory student checks

    Any unit which contains work integrated learning, a community placement or interaction with the community may require a police check, Working with Children Check or other check.

    Workload

    You can expect to participate in a range of teaching activities each week. This could include classes, seminars, practicals and online interaction. You can refer to the individual unit details in the course structure for more information. You will also need to study and complete assessment tasks in your own time.

    Participation requirements

    Elective units may be selected that include compulsory placements, work-based training, community-based learning or collaborative research training arrangements.

    Reasonable adjustments to participation and other course requirements will be made for students with a disability. More information available at Disability support services.

    Work experience

    You may have an opportunity to undertake a placement as part of your course. For more information, please visit deakin.edu.au/sebe/wil.

    Entry requirements

    Selection is based on a holistic consideration of your academic merit, work experience, likelihood of success, availability of places, participation requirements, regulatory requirements, and individual circumstances. You will need to meet the minimum academic and English language proficiency requirements to be considered for selection, but this does not guarantee admission.

    Academic requirements

    To be considered for admission to this degree you will need to meet at least one of the following criteria:

    • completion of a bachelor degree or higher in a related* discipline
    • completion of a bachelor degree or higher in any discipline and at least two years' relevant* work experience (or part-time equivalent).

    *Related to the broad field of Information Technology.

    English language proficiency requirements

    To meet the English language proficiency requirements of this course, you will need to demonstrate at least one of the following:

    Admissions information

    Learn more about Deakin courses and how we compare to other universities when it comes to the quality of our teaching and learning.

    Not sure if you can get into Deakin postgraduate study? Postgraduate study doesn't have to be a balancing act; we provide flexible course entry and exit options based on your desired career outcomes and the time you're able to commit to your study.

    Recognition of prior learning

    The University aims to provide students with as much credit as possible for approved prior study or informal learning which exceeds the normal entrance requirements for the course and is within the constraints of the course regulations. Students are required to complete a minimum of one-third of the course at Deakin University, or four credit points, whichever is the greater. In the case of certificates, including graduate certificates, a minimum of two credit points within the course must be completed at Deakin.

    You can also refer to the recognition of prior learning (RPL) system which outlines the credit that may be granted towards a Deakin University degree and how to apply for credit.

    Recognition of prior learning may be granted for relevant postgraduate studies, in accordance with standard University procedures.

    Fees and scholarships

    Fee information

    Estimated tuition fee - (CSP)?
    $8,802 for 1 yr full-time - Commonwealth Supported Place (HECS)

    Learn more about fees.

    The available fee places for this course are detailed above. Not all courses at Deakin have Commonwealth supported places available. The 'Estimated tuition fee' is provided as a guide only and represents the typical first-year tuition fees for students enrolled in this course. The cost will vary depending on the units you choose, your study load, the length of your course and any approved Recognition of prior learning you have.

    One year full-time study load is typically represented by eight credit points of study. Each unit you enrol in has a credit point value. The 'Estimated tuition fee' is calculated by adding together eight credit points of a typical combination of units for your course.  

    You can find the credit point value of each unit under the Unit Description by searching for the unit in the handbook.  Learn more about fees and available payment options.

    Scholarship options

    A Deakin scholarship might change your life. If you've got something special to offer Deakin – or you just need the financial help to get you here – we may have a scholarship opportunity for you.

    Search or browse through our scholarships

    Postgraduate bursary

    If you’re a Deakin alumnus commencing a postgraduate award course, you may be eligible to receive a 10% reduction per unit on your enrolment fees.

    Learn more about the 10% Deakin alumni discount

    Apply now

    Apply directly to Deakin

    Some of our courses have limited places available - to browse those still open for application, visit courses by trimester.

    To apply, create an account in the Deakin Application Portal, enter your personal details and education experience, upload supporting documents and submit. Need help? Play this video, or contact one of our friendly future student advisers on 1800 693 888 or submit an online enquiry.

    Need more information on how to apply?

    For more information on the application process and closing dates, see the How to apply webpage. If you're still having problems, please contact us for assistance.

    Research Information

    Students interested in pursuing a Higher Degree by Research (HDR), including a Masters by Research or PhD are encouraged to undertake the Professional Studies – Research Project pathway. High achieving students with a particular interest in research should also consider undertaking either the Research Training in Information Technology specialisation or additional research units as electives (e.g. SIT724, SIT746 and/or SIT747). Students are encouraged to contact Student Central and speak to a course advisor if they are interested in pursuing this option.

    Pathways

    Pathways for students to enter the Master of Data Science (Professional) are as follows:

    Pathway options will depend on your professional experience and previous qualifications.

    Alternative exits

    Contact information

    Our friendly advisers are available to speak to you one-on-one about your study options, support services and how we can help you further your career.

    Careers

    Career outcomes

    In fiercely competitive markets where businesses are constantly striving to increase profit, reduce costs and provide exceptional customer value, the requirement for skilled data professionals is growing at a rapid pace. Graduates of this course may find a career as a data analyst, data scientist, analytics programmer, analytics manager, analytics consultant, business analyst, management advisor, management analyst, business advisor and strategist, marketing manager, market research analyst or a marketing specialist.

    Course learning outcomes

    Deakin's graduate learning outcomes describe the knowledge and capabilities graduates can demonstrate at the completion of their course. These outcomes mean that regardless of the Deakin course you undertake, you can rest assured your degree will teach you the skills and professional attributes that employers value. They'll set you up to learn and work effectively in the future.

    Deakin Graduate Learning Outcomes Course Learning Outcomes
    Discipline-specific knowledge and capabilities

    Develop a broad, coherent knowledge of the analytics discipline, including: the origin and characteristics of data; the methods and approaches to dealing with data appropriately and securely; and how the use of analytics outcomes can be used to improve business, organisations or society.

    Apply advanced knowledge and skills to decompose complex processes (from real world situations) to develop data analytics solutions for use in modern organisations across multiple industry sectors.

    Assess the role data analytics plays in the context of modern organisations and society in order to add value. Have a broad appreciation of advanced topics within the IT domain through engagement with research or specialist studies.

    Communication

    Communicate in professional and other context to inform, explain and drive sustainable innovation through data science and to motivate and effect change by drawing upon advances in technology, future trends and industry standards, and by utilising a range of verbal, graphical and written methods, recognising the needs of diverse audiences including specialist and non-specialist clients, industry personnel and other stakeholders.

    Digital literacy

    Identify, evaluate, select and use advanced digital technologies, platforms, frameworks, and tools from the field of data science to generate, manage, process and share digital resources and justify digital tools selection to influence others.

    Critical thinking

    Questions assumptions and seeks to uncover inconsistencies and ambiguities in information and judgements, critically evaluates their sources and rationales, to inform and justify decision making in the field of data science.

    Problem solving

    Demonstrate an advanced and integrated understanding of data science and apply expert, specialised cognitive, technical, and creative skills from data science to understand requirements and design, implement, operate, and evaluate solutions to complex real-world and ill-defined computing problems.

    Self-management

    Apply reflective practice and work independently to apply knowledge and skills in a professional manner to complex situations and ongoing learning in the field of data science with adaptability, autonomy, responsibility, and personal and professional accountability for actions as a practitioner and a learner.

    Teamwork

    Work independently and collaboratively within multidisciplinary environments to achieve team goals, contributing specialist knowledge and skills from data science to advance the teams objectives, employing effective teamwork practices and principles to cultivate creative thinking, interpersonal adeptness, leadership skills, and handle challenging discussions, while excelling in diverse professional, social, and cultural scenarios.

    Global citizenship

    Engage in professional and ethical behaviour in the field of data science, with appreciation for the global context, and openly and respectfully collaborate with diverse communities and cultures.