Master of Energy System Management (Professional)

Postgraduate coursework

Engineering offers an exciting future with an increasing demand for graduates both in Australia and internationally.

Progressive, real-world learning. Online.

40 years of distance and online teaching excellence

#1 university in Australia for educational experience*

Connect with 60,000+ online students

Top 1% of universities worldwide#

Australia's top-rated tech support~

#1 university careers service in Australia^

78,000+ high-achieving online graduates

#1 university in Victoria for student satisfaction^^

Key facts

Duration

2 years full-time or part-time equivalent

Key dates

Direct applications to Deakin for Trimester 1 2021 close 21 February 2021

Current Deakin Students

To access your official course details for the year you started your degree, please visit the handbook

Course information

Engineering offers an exciting future with an increasing demand for graduates both in Australia and internationally. With ambitious renewable energy targets around the world, there is an increasing global demand for skilled senior engineers who can design, manage and maintain new distributed energy grid systems.

The Master of Energy System Management (Professional) focuses on practical and real-world problems that blend project-based and workplace learning.

This two-year professional program extends your knowledge in energy management systems through a unique blend of engineering, IT and science units. With a focus on research, you’ll complete specific research units and a research project in your final year of study.

Upon graduation, you will be equipped with knowledge and skills to tackle problems associated with energy systems that include; efficiency and renewable and alternative solutions and policy.

Want to develop real-world solutions to global energy challenges?

Deakin’s School of Engineering is leading the way in cutting edge research in this area and developing innovative solutions for industry. Through this program you’ll have the opportunity to contribute to developing real-world solutions to global energy challenges through a research project. The program also provides a pathway for further postgraduate qualifications (eg. PhD) through the completion of specific research units in your final year of study.

You will develop unique strengths to work collaboratively in professional teams in order to develop evidence-based engineering solutions. Throughout the degree you will acquire critical-thinking, innovative problem-solving and entrepreneurial skills that employers are looking for to satisfy the growing need for intelligent energy systems and the increasing use of renewable and alternative energy sources for a variety of residential and commercial applications.

You will have world-class facilities and equipment at your fingertips with access to Deakin’s state-of-the-art engineering precinct and the Geelong Future Economy Precinct (GTP) – home to the Renewable Energy Microgrid, Institute for Frontier Materials (IFM), Institute for Intelligent Systems Research and Innovation (IISRI), CSIRO Materials Science and Engineering and the Australian Future Fibre Research and Innovation Centre.

Read More

Course structure

To complete the Master of Energy System Management (Professional), students must attain 16 credit points. Most units (think of units as ‘subjects’) are equal to 1 or 2 credit point, sometimes abbreviated as 'cps'.   Most students choose to study 4 units per trimester, and usually undertake two trimesters each year.

The course comprises a total of 16 credit points, which must include the following:

  • 15 core units (totalling 16 credit points)
  • Completion of STP710 Career Tools for Employability (0-credit point compulsory unit)
  • Completion of SEE700 Safety Induction Program (0-credit point compulsory unit)
  • Completion of STP050 Academic Integrity (0-credit point compulsory unit)

Students are required to meet the University's academic progress and conduct requirements. Click here for more information.

Core

  • Academic Integrity (0 credit points)
  • Career Tools for Employability (0 credit points)
  • Safety Induction Program (0 credit points)
  • Engineering Sustainability
  • Managing Engineering Projects
  • Product Development
  • Energy Market and Policy
  • Microgrid Design and Management
  • Energy Efficiency and Demand Management
  • Smart Grid Systems
  • Renewable Energy Systems
  • Research Methodology
  • Engineering Project Initiation #
  • Project Implementation and Evaluation (2 credit points)
  • Plus one unit in:

  • Introduction to Engineering Professional Practice
  • Internship - Engineering #
  • Plus three units in:

  • Cyber Security Management
  • Analytics for Security and Privacy
  • Sustainable Futures
  • Environmental Management Systems
  • # Must have successfully completed STP710 Career Tools for Employability (0 credit-point compulsory unit)

    Key information

    Award granted
    Master of Energy System Management (Professional)
    Year

    2021 course information

    Deakin code
    S757
    CRICOS code?
    0101804
    Level
    Higher Degree Coursework (Masters and Doctorates)
    Approval status

    This course is approved by the University under the Higher Education Standards Framework.

    Australian Qualifications Framework (AQF) recognition

    The award conferred upon completion is recognised in the Australian Qualifications Framework at Level 9.

    Campuses by intake

    Campus availability varies per trimester. This means that a course offered in Trimester 1 may not be offered in the same location for Trimester 2 or 3. Read more to learn where this course will be offered throughout the year.

    Trimester 1 - March

    Trimester 2 - July

    Trimester 3 - November

    Additional course information

    Course duration - additional information

    Course duration may be affected by delays in completing course requirements, such as accessing or completing work placements.

    Mandatory student checks

    Any unit which contains work integrated learning, a community placement or interaction with the community may require a police check, Working with Children Check or other check.

    Workload

    Successful students typically spend about 150 hours in learning and assessment for each one credit point unit. The time required to prepare evidence for credential assessment varies based on the student’s existing documentation.

    Participation requirements

    Reasonable adjustments to participation and other course requirements will be made for students with a disability. Click here for more information.

    Entry requirements

    Entry information

    Deakin University offers admission to postgraduate courses through a number of Admission categories.

    All applicants must meet the minimum English language requirements.

    Please note that meeting the minimum admission requirements does not guarantee selection, which is based on merit, likelihood of success and availability of places in the course.

    For more information on the Admission Criteria and Selection (Higher Education Courses) Policy visit the Deakin Policy Library

    • 4-year bachelor degree or equivalent (AQF Level 8) in a relevant (related) engineering discipline.

    Recognition of prior learning

    The University aims to provide students with as much credit as possible for approved prior study or informal learning which exceeds the normal entrance requirements for the course and is within the constraints of the course regulations. Students are required to complete a minimum of one-third of the course at Deakin University, or four credit points, whichever is the greater. In the case of certificates, including graduate certificates, a minimum of two credit points within the course must be completed at Deakin. 

    You can also refer to the Recognition of Prior Learning System which outlines the credit that may be granted towards a Deakin University degree and how to apply for credit

    Recognition of Prior Learning may be granted for relevant postgraduate studies, in accordance with standard University procedures.

    Fees and scholarships

    Fee information

    Estimated tuition fee - full-fee paying place
    $34,600 for 1 yr full-time - Full-fee paying place
    Learn more about fees and your options for paying.
    Estimated tuition fee - (CSP)?
    Not applicable

    The available fee places for this course are detailed above. Not all courses at Deakin have Commonwealth supported places available.

    The 'Estimated tuition fee' is provided as a guide only based on a typical enrolment of students completing the first year of this course. The cost will vary depending on the units you choose, your study load, the length of your course and any approved Recognition of Prior Learning.

    One year full-time study load is typically represented by eight credit points of study. Each unit you enrol in has a credit point value. The 'Estimated tuition fee' is calculated by adding together eight credit points of a typical combination of units for your course.

    You can find the credit point value of each unit under the Unit Description by searching for the unit in the Handbook.

    Learn more about fees and available payment options.

    Scholarship options

    A Deakin scholarship might change your life. If you've got something special to offer Deakin – or you just need the financial help to get you here – we may have a scholarship opportunity for you.

    Search or browse through our scholarships

    Postgraduate bursary

    If you’re a Deakin alumnus commencing a postgraduate award course, you may be eligible to receive a 15% reduction per unit on your enrolment fees. Your Immediate Family Members may also be eligible to apply for this bursary.

    Learn more about Deakin’s 15% postgraduate bursary

    Apply now

    How to apply

    Apply direct to Deakin

    Applications can be made directly to the University through the Deakin Application Portal. For information on the application process and closing dates, see the how to apply web page. Please note that closing dates may vary for individual courses.

    Download the course flyer

    To learn more about what the Master of Energy System Management (Professional) at Deakin has to offer, download our course flyer.

    Need more information on how to apply?

    For more information on the application process and closing dates, see the How to apply webpage. If you're still having problems, please contact us for assistance.

    Entry pathways

    There are currently no pathway or credit arrangements.

    Alternative exits

    Contact information

    Faculty of Science, Engineering and Built Environment
    School of Engineering
    deakin.edu.au/engineering

    Prospective student enquiries
    Are you looking to apply for this course or would like further information?
    Call 1800 693 888 or email us at myfuture@deakin.edu.au
    Enquire online

    Current student course and enrolment enquiries
    Call 03 5227 2463 or email us at sebe-enquire@deakin.edu.au
    Submit an online enquiry

    Why choose Deakin

    Career outcomes

    Graduates will be able to take responsibility for interpreting and implementing energy changes for society, business and government, and for ensuring that policy decisions are adequately informed.

    These skills would equip graduates to work in specialist roles such as:

    • Energy Manager
    • Renewable Energy Engineer
    • Energy Systems Engineer
    • Energy Supply Consultant

    Course learning outcomes

    Deakin's graduate learning outcomes describe the knowledge and capabilities graduates can demonstrate at the completion of their course. These outcomes mean that regardless of the Deakin course you undertake, you can rest assured your degree will teach you the skills and professional attributes that employers value. They'll set you up to learn and work effectively in the future.

    Deakin Graduate Learning Outcomes

    Course Learning Outcomes

    Discipline-specific knowledge and capabilities

    Advocate ideas and make decisions from conception through to implementation by properly evaluating and integrating technical and non-technical considerations as desirable outcomes of energy system management engineering projects and practice.

    Apply knowledge of electrical, renewable and alternative energy engineering principles and techniques, and use research, project design and management skills and approaches to systematically investigate, interpret, analyse and generate solutions for complex problems and issues.

    Manage engineering solutions, projects and programs, and ensure reliable functioning of all components, sub-systems and technologies as well as all interactions between the technical system and the context within which it functions to form a complete, sustainable and self-consistent system that optimises social, environmental and economic outcomes over its full lifetime.

    Respond to or initiate research concerned with advancing energy system engineering and developing new principles and technologies within this specialist engineering discipline using appropriate methodologies and thereby contribute to continual improvement in the practice and scholarship of engineering.

    Communication

    Prepare high quality engineering documents and present information including approaches, procedures, concepts, solutions, and technical details in oral, written and/or visual forms appropriate to the context, in a professional manner.

    Use reasoning skills to critically and fairly analyse the viewpoints of stakeholders and specialists and consult in a professional manner when presenting an engineering viewpoint, arguments, justifications or solutions to engage technical and non-technical audience in discussions, debate and negotiations.

    Digital literacy

    Use a wide range of digital engineering and scientific tools and techniques to analyse, simulate, visualise, synthesise and critically assess information and methodically and systematically differentiate between assertion, personal opinion and evidence for engineering decision-making.

    Demonstrate the ability to independently and systematically locate and share information, standards and regulations that pertain to the specialist engineering discipline.

    Critical thinking

    Identify, discern, and characterise salient issues, determine and analyse causes and effects, justify and apply appropriate assumptions, predict performance and behaviour, conceptualise engineering approaches and evaluate potential outcomes against appropriate criteria to synthesise solution strategies for complex engineering problems.

    Problem solving

    Use research-based knowledge and research methods to identify, reveal and define complex engineering problems which involve uncertainty, ambiguity, imprecise information, conflicting technical or non-technical factors and safety and other contextual risks associated with engineering application within an engineering discipline.

    Apply technical knowledge, problem solving skills, appropriate tools and resources to design components, elements, systems, plant, facilities, processes and services to satisfy user requirements taking in to account broad contextual constraints such as social, cultural, economic, environmental, legal, political and human factors as an integral factor in the process of developing responsible engineering solutions.

    Identify recent developments, develop alternative concepts, solutions and procedures, appropriately challenge engineering practice from technical and non-technical viewpoints and thereby demonstrate capacity for creating new technological opportunities, approaches and solutions.

    Self-management

    Regularly undertake self-review and take notice of feedback to reflect on achievements, plan professional development needs, learn from the knowledge and standards of a professional and intellectual community and contribute to its maintenance and advancement.

    Commit to and uphold codes of ethics, established norms, standards, and conduct that characterises accountability and responsibility as a professional engineer, while ensuring safety of other people and protection of the environment.

    Teamwork

    Function effectively as a team member, take various team roles, consistently complete all assigned tasks within agreed deadlines, proactively assist, contribute to ideas, respect opinions and value contribution made by others when working collaboratively in learning activities to realise shared team objectives and outcomes.

    Apply people and personal skills to resolve any teamwork issues, provide constructive feedback that recognises the value of alternative and diverse viewpoints, and contribute to team cohesiveness, bringing to the fore and discussing shared individual and collective knowledge and creative capacity to develop optimal solutions to complex engineering problems.

    Global citizenship

    Demonstrate an advanced understanding of the global, cultural and social diversity and complex needs of communities and cultures through the assessment of qualitative and quantitative interactions between engineering practices, the environment and the community, the implications of the law, relevant codes, regulations and standards.

    Actively seek traditional, current and new information to assess trends and emerging practice from local, national and global sources and appraise the diversity, equity and ethical implications for professional practice.

    Approved by Faculty Board 21 November 2019

    * 2019 Student Experience Survey, based on undergraduate students
    # ARWU Rankings 2019
    ~ According to the Voice Project IT Service Quality Support Benchmark Survey
    ^ Australian Graduate Recruitment Industry Awards, 2017, 2018, 2019 winner
    ^^ Australian Graduate Survey 2010–2015, Graduate Outcomes Survey 2016–2019 (GOS), Quality Indicators for Learning and Teaching (QILT)